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ABSTRACT: The genetic algorithm (GA) is a powerful 
method which can be used to solve search and optimization 
problems. A genetic algorithm with tournament selection, 
uniform crossover and uniform mutation is used to optimize 
sediment transport parameters in this study. Two important 
parameters of sediment transport, the critical shear stress for 
deposition and resuspension, are optimized by GA. The results 
show that GA is efficient and robust for optimizing parameters 
of our sediment transport simulation of Deep Bay. 
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1  INTRODUCTION  
 
Sediment transport models [1-5] are commonly used to 
study the movement of sediment in coastal areas. 
However, it is difficult to obtain accurate results 
because the movement of sediment is very complicate 
in coastal areas. Some important parameters used in 
sediment transport models are empirical or not 
suitable. In order to get better results, optimization 
methods can be used to optimize these parameters. In 
this study, a genetic algorithm (GA) [6-8] is used to do 
the optimization. 
 
 GA is one of the most powerful optimization methods 
which inspired by biological processes of natural 
selection and the survival of the fittest. The major 
advantage of GA is that it makes relatively few 
assumptions and does not rely on any mathematical 
properties of the functions. Therefore, GA is suitable 
for solving non-linear and multi-objective 
optimization problems. In recent years, genetic 
algorithms have been successfully applied to solving a 
number of hydrology and water resource problems [9-15]. 
 
The purpose of this research is to investigate the use 

of GA in a hydrodynamic/sediment transport model. 
In section 2, our hydrodynamic/sediment transport 
model is described. In section 3, a brief introduction to 
genetic algorithm is presented. The parameters to be 
optimized by GA are discussed in section 4. In section 
5, the application of GA to sediment transport model 
is studied. Finally, a conclusion is given in section 6. 
 
2  MODEL DESCRIPTION 
 
2.1  Hydrodynamic model 
 
The numerical model used in this study is a three 
dimensional finite element model. Because the 
hydrodynamics in estuaries and coasts can be assumed 
to be isothermal and the vertical acceleration is small 
compared to the gravitational acceleration, the 
hydrostatic assumption is made for the governing 
equations of fluid flow. In this research, the sigma (σ) 
topographic following coordinate system is used in the 
vertical direction.  
 
Fluid-flow equations for shallow water 
 
Mass conservation equation 
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Momentum equation (Navier-Stokes equations) 
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 i=1, 2; j=1, 2, 3; Pi
* is the baroclinic term with 

Boussinesq assumption. t is the time; h is the water 
depth relative to the minimum water level; ζ is the 
water level from the minimum water level; f is the 
Coriolis parameter; x1, x2, x3 are the spatial 
coordinates in the σ coordinates; u, v, ω are 
components of velocity of the x, y, z direction in σ 
coordinates, respectively; w is the vertical velocity in 
Cartesian coordinate; ρ0 is the constant reference 
water density; εx, εy, εz are the eddy viscosity 
coefficients for water in the x, y, z direction, 
respectively; εsali,x, εsali,y, εsali,z are the eddy diffusion 
coefficient for salinity in the x, y, z direction, 
respectively. 
 
2.2  Sediment transport model  
 
The following equation is used to describe the 
suspended sediment transport process in our model: 

,
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where  
2

, , , ,, ,sed j sed x sed y sed z Hε ε ε ε −⎡ ⎤= ⎣ ⎦ ;  
Cs is the cohesive sediment concentration, ws is the 
sediment setting velocity; , , ,, ,sed x sed y sed zε ε ε are the 
eddy diffusion coefficients for sediment; 
 
3  GENETIC ALGORITHM 
 
Genetic algorithms are search algorithms which 
imitate the evolution and natural selection process of 
biology. GA was developed by Holland in the 1960s [16-18]. 
The term “genetic algorithm” was first mentioned by 
Bagley [19] in work on game-playing programs. 
Holland’s 1975 book Adaptation in Natural and 
Artificial Systems [6] presented the theoretical 
foundations and exploring applications of genetic 
algorithm. Work by De Jong [20] showed the 
effectiveness of GA for function optimization. 
Goldberg [7] contributed much to the popularity of GA 
with his successful applications. Since then, GA is 
widely used in various problems. 
 
In general, genetic algorithm starts with a randomly 
generated population consisting of a number of 
individuals. Each individual represents a possible 

solution of a given optimization problem. Then the 
genetic process which includes the three major 
operators of GA, selection, crossover and mutation, is 
implemented. The selection is a process in which 
some individuals in current population are selected to 
form a new population according to their fitness. A 
fitness function is used to evaluate the ability of each 
individual to solve the optimization problem. When 
the selection is completed, the crossover operator is 
executed.  The crossover is an important operator of 
GA which can generate dissimilar individuals. The 
last operator of GA is mutation which randomly alters 
the values of individuals. After that, the genetic 
process is repeated until the termination conditions are 
satisfied. A general flow chart of GA is shown in Fig. 
1. 
 

Satisfy termination
conditions?

Determine
parameters and

ranges

Encoding

Evaluation

Selection

CrossoverMutation

Initialize
population

No

End

Yes

Fig. 1 Flow chart of Genetic Algorithm 
 

4  PARAMETERS TO BE OPTIMIZED 
 
In our application, two major parameters of our 
sediment transport model are selected to be optimized 
by GA, the critical shear stress for deposition and 
resuspension. They are important parameters of 
sediment transport model and our numerical 
experiments also show that sediment concentration is 
sensitive to these two parameters. 
 
The vertical sediment exchange rate in the water 
column is defined as qs in this study: 

,
s

s dep res s s sed z
Cq q q w C
z

ε ∂= + = − −
∂

                    (4) 

On the assumption that there is no net sediment 
exchange at the water surface, the first term on left 
side of Eq. (4) is the deposition rate on the sea bed 
which relates to the settling velocity, and the second 
term is the sediment resuspension rate caused by the 
bottom shear stress. The formula for deposition rate 
proposed by Krone [21] is adopted in this study: 
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The formula for resuspension rate used in this 
research is suggested by Lick [22] based on the 
experimental data of cohesive sediment: 
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In these two exchange rate formulas, τb is the bed 
shear stress; τdep is the critical shear stress for 
deposition, with typical values between 0.04-0.15 
N/m2 [21]; τres is the critical shear stress for bed 
erosion/resuspension, with typical values between 
0.07-0.17 N/m2 [23]; m and a are constants, their values 
are 0.008 and 1.5 in this study. 
 
5  APPICATION TO DEEP BAY  
 
In this study, genetic algorithm is used to optimize the 
critical shear stress for deposition and resuspension of 
our sediment transport model. The optimized values 
are used to simulate the sediment transport in Deep 
Bay. Other values (See Table 1) of these two 
parameters obtained from two papers (Liu et al. and 
Wu et al. [24-25])are also used to do the simulation. 
These values are chosen because they are also used to 
simulate sediment transport in coastal areas. The 
suspended sediment concentration computed by these 
values are compared with the one calculated by the 
optimized values. 
 
Table 1 Values of the parameters obtained from papers 

Liu's values Wu's values  
Parameters   (Liu et al 2002) (Wu et al 1998) 

τdep (N/m2)  0.05 0.07 

τres (N/m2)  0.1 0.15 
 
5.1  Deep bay 
 
Deep Bay is a large shallow bay which located in the 
eastern of Pearl River Estuary, between the longitudes 
of 113°53′06″E and 114°02′30″E 22°32′12″N, 
latitudes of 22°24′18″N and 22°32′12″N. The average 
water depth of Deep Bay is about 3 m and the tidal 
range is about 1.4 m.  
 
The computation area includes most part of Pearl 
River Estuary (see Fig. 2). The mesh of our model is 
triangle and each triangle element has six nodes. 
There are a total of 4923 elements and 10736 nodes. 

The largest element size is 2.219 km2 and the 
minimum is 0.005 km2. 
 

Hong Kong

Shen Zhen

Macau

 
Fig. 2 Research domain and model mesh 

 
5.2  GA operators and parameters in this 

application 
 
Considering the time cost and handling ability of 
computer, the number of individuals is set to 30 in this 
research. 
 
There are some selection strategies used for selecting 
individuals such as roulette wheel [20], tournament [26] 
and ranking selection [27]. The selection operator used 
in this study is a tournament selection [28]. This 
selection strategy is adopted because it can maintain 
diversity in the population [29]. The mechanism of this 
selection is that two individuals are randomly chosen 
from current population and the one with greater 
fitness value is selected. However, this selection 
strategy cannot ensure that the fittest individuals are 
selected. Thus, elitism selection [30] which can greatly 
improve the search speed is employed to guarantee the 
selection of best individuals for next generation. 
 
Fitness function is used to evaluate the fitness of each 
individual. Relative error is usually used to estimate 
results of numerical models but relative error cannot 
reflect the actual error when the sediment 
concentration is small. In this study, absolute error is 
used to estimate the fitness of individuals. The fitness 
function is defined as: 
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Here F is the fitness of individual, n is the number of 
observation stations, m is the number of observed data, 

obsC is the observed sediment concentration at station 
j, comC is the computed sediment concentration at 
station j. 
 
The uniform crossover [31-32] is adopted in this 
application since uniform crossover is probably the 
most effective crossover since it allows the offspring 
chromosomes to search all possibilities of re-
combining those different genes in parents [33]. High 
crossover probabilities is claimed to have high search 
efficiency in GA. Goldberg [7] suggests a range of 0.6-
1 for the crossover probability. In this study the 
crossover probability is set to 0.8. 
 
There are several types of mutation such as single 
point, uniform, etc. A uniform mutation is adopted in 
this study. This kind of mutation permits the value of 
a gene to be mutated randomly within its feasible 
range of values, possibly resulting in significant 
modification of otherwise good solutions [29]. The 
mutation probability is set to 0.05. 
 
GA will stop when the termination conditions are 
satisfied. Some rules are used to stop GA, for example: 
a maximum number of generations is reached and the 
solution has no improvement in several generations. 
In this study, the former one is adopted and the 
number of generations is set to 50. 
 
5.3  Results and discussion 
 
The computation results of GA are show in Table 2. 
The optimized values of the critical shear stress for 
deposition and resuspension are 0.075 and 0.118 N/m2, 
respectively. The maximum fitness is 0.51. The CPU 
time is 25 hours, most of which is spent in running the 
sediment transport model. Values of each individual 
are substituted into sediment transport model to do the 
simulation and the results are estimated by the fitness 
function. So if the simulation time of each individual 
is one day, the total simulation time would be 1500 
(30×50) days.  
 
Sediment data of two observation stations are used to 
estimate the effect of the GA. The locations of the 
stations are shown in Fig3. Fig4 and Fig5 show the 
comparison of the results computed by the optimized 
values and the values from the two papers at station 1 
and 2 respectively. It can be seen from these two 

figures that the results of the optimized values show 
the best match with the observed data. Our numerical 
experiments show that sediment concentration is very 
sensitive to the critical shear stress of resuspension 
(τres). Lower τres means the resuspension process will 
occur earlier and more sediment resuspend during a 
tidal cycle period. So the Liu’s values have a higher 
sediment concentration. Contrarily, higher value of τres 
means less sediment resuspend during a tidal cycle. 
That is why the Wang's values have a lower sediment 
concentration. The mean absolute error is also 
computed, the result is shown in Table3. The 
optimized values have a least mean absolute error of 
0.01. 
 
Table 2  Computation results of GA 

  Results of GA  

CPU time(h) 25 

Best fitness 101.7 

τdep (N/m2)  0.075 

τres (N/m2)  0.118 

 
. 

Deep
 Bay1

2

 
Fig. 3 Locations of sediment observation stations 

 
All those results show that GA can effectively 
improve the simulation result of sediment transport 
model in coastal areas. However, one drawback of 
applying GA to sediment transport model is that it 
requires huge amount of computer resource. 
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Fig. 4 Comparison of the results computed by optimized values 
and Liu and Wu’s values at station 1 
 

 
Fig. 4 Comparison of the results computed by optimized values 
and Liu and Wu’s values at station 1 
 
Table 3 Comparison of mean absolute error at the two stations 

Liu's 
values 

Wu's 
values   Parameters  Optimized 

values   (Liu et al 
2002)  

(Wu et al 
1998)  

Mean absolute 
error 0.010  0.013  0.012  

 
 
6  CONCLUSIONS 
 
In order to improve the accuracy of simulation results 
of sediment transport, a genetic algorithm with 
tournament and elitism selection, uniform crossover 
and uniform mutation operators is adopted to 
optimized parameters of sediment transport model. 
The critical shear stress for deposition (τdep) and 
resuspension (τres) are chosen as the parameters to be 
optimized by GA. Other documented values are also 
used. Result comparisons show that, with the 
application of GA, our model can attain more accurate 
results of sediment transport in Deep Bay. 
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