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Abstract A Gram-negative bacterium, denoted

JLT2012T, was isolated from the surface water of the

Pacific Ocean. This aerobic bacterium was rod shaped and

devoid of flagella, displayed gliding motility, and grew in

characteristic orange colonies. The bacterium contained

ubiquinone Q-10 as the major respiratory quinone, and

spermidine and spermine as the major polyamine com-

pounds. The dominant fatty acids were C18:1x7c and/or

C18:1x6c (34.7 %), C16:0 (21.3 %), and C18:0 (15.9 %),

whereas the polar lipids consisted mainly of diphos-

phatidylglycerol, phosphatidylethanolamine, phosphatidyl-

glycerol, four sphingoglycolipids, and several unknown

glycolipids. The G ? C content DNA was found to be

65.5 mol%. Comparative 16S rRNA gene sequence anal-

ysis revealed that strain JLT2012T formed a distinct lineage

within the genus Pacificimonas (formerly known as Paci-

ficamonas) and shared the highest sequence similarity with

the type strain of Pacificimonas flava JLT2015T (96.0 %).

Data combined from different studies on the phenotypic,

phylogenetic, and genomic characteristics indicated that

strain JLT2012T is a representative of a novel species

within Pacificimonas for which the name Pacificimonas

aurantium sp. nov. (type strain JLT2012T=LMG 27361T-

=CGMCC 1.12399T) is proposed.

Introduction

The genus Pacificimonas, belonging to the family Sphin-

gomonadaceae [11], was first described by Liu et al. [13]

and currently consists of a single species, Pacificimonas

flava. Members of Sphingomonadaceae share several

phenotypic traits, including smaller cell size, the presence

of yellow colonies, predominant quinone profiles (Q-10),

and spermidine as the major polyamine patterns [15, 25].

Species of the family Sphingomonadaceae display an

oligotrophic strategy with low growth rates in the nutrient-

limited marine environment [12]. Oligotrophic bacteria are

the major contributors of microbial biomass in oligotrophic

marine, and these organisms play vital roles in global

cycling of carbon, nitrogen, and other biogeochemical

processes [21]. With the development of advanced tech-

niques, novel microbial species from the oligotrophic

oceans have been discovered. These microbial species have

been reported to contribute to novel metabolic pathways

such as alphaproteobacterium ‘‘Candidatus Pelagibacter

ubique’’ (SAR11 clade) and gammaproteobacterium

HTCC2207 (SAR92 clade) isolates [22, 23]. The genome

of Pacificimonas flava has been fully sequenced, and the

analysis revealed that it contains abundant TonB-depen-

dent transporter genes. The bacteria can adapt efficiently

with the marine environment because of the presence of

these transporter genes, which allow the bacteria to take up

scarce resources from their surroundings [26]. In the pre-

sent study, strain JLT2012T was isolated from the surface

water of the Pacific Ocean. Based upon the phylogenetic,

The GenBank accession number for the 16S rRNA gene sequence of

strain JLT2012T is JX878395.
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chemotaxonomic, and other phenotypic studies, JLT2012T

was considered to represent a novel species within the

genus Pacificimonas.

Materials and Methods

Isolation and Cultivation of Strains

Surface seawater samples (at a depth of 50 m) were col-

lected from the Pacific Ocean (102�350W, 3�410S).
JLT2012T was screened using the direct plating method.

The surface seawater samples (200 ll) were taken and

spread on a marine agar 2216 (MA; BD) plate, and the

plates were incubated at 30 �C for 3 days. The strain was

subsequently isolated and purified as single colonies on

MA after incubation at 30 �C for 2 weeks, and stored in

15 % (v/v) glycerol suspensions in liquid nitrogen or at

-80 �C. The culture was routinely grown in the marine

broth 2216 (MB; BD).

Phenotypic and Chemical Characterization

Colony morphology and pigmentation were observed after

cultivation of JLT2012T on MA at 25 �C for 2 days. The

cells were grown on MA for 2 days at 30 �C, following
which, the cell size and morphology were observed under

the transmission electron microscope (JEM-1230; JEOL

USA) (Supplementary Fig. S1). A Gram-staining reaction

was performed as described by Gerhardt et al. [5]. The

gliding motility was determined by a semi-solid agar

puncture method [3]. Hydrolysis of casein, starch, and

gelatin was determined according to the method described

by Smibert & Krieg [20]. Oxidase, catalase activity, and

other biochemical and physiological properties were per-

formed with the API 20E, API 20 NE, and API ZYM strips

(bioMérieux) according to the manufacturer’s protocol.

Bacterial growth on sole carbon sources and nitrogen

sources was tested by using Biolog GN2 microplates

described by Rüger and Krambeck [18]. The presence of

polyhydroxyalkanoates (PHAs) granules in the bacterial

cells were studied with the Nile blue A staining method

[17]. The antimicrobial agent susceptibility tests were

performed by using the disk diffusion plate method

described by Liu et al. [13].

Bacterial growth at various NaCl concentrations was

investigated on the MB medium, with final NaCl concen-

trations of 0, 0.5, and 1.0–13.0 %, at intervals of 1.0 % (w/

v) (at pH 7.8, 25 �C). Specifically, all the other components

of the MB kept constant, and only the NaCl content was

adjusted accordingly. The bacterial growth at different

temperatures (4, 10, 20, 25, 30, 35, 40 and 50 �C, at pH 7.8,

2.0 % NaCl) was also measured in the MB medium.

Bacterial growth at different pH values (pH 4.0–10.0, in

increments of 1.0 pH unit) was observed after adjusting the

final pH of the MB medium with HCl or NaOH (at 2.0 %

NaCl, 25 �C). The following biological buffers were used

to adjust the pH: Na2HPO4/NaH2PO4 for pH 4.0–7.0 and

Na2CO3/NaHCO3 for pH 8.0–10.0.

Chemotaxonomy

Respiratory quinones were extracted from 100 mg of

freeze dried cell material using the two-stage method

described by Tindall [27, 28] and analyzed by HPLC. For

the polyamines analysis, cells were harvested on PYE

medium (0.3 % peptone from casein, 0.3 % yeast extract,

pH 7.2), extracted, and analyzed as described as previously

[1]. The genomic DNA was extracted according to the

method of Marmur [14], and the genomic DNA G ? C

content of strain JLT2012T was estimated using the HPLC

method [16]. Cellular fatty acids were extracted from the

cells grown on the MA medium for 2 days at 30 �C
according to the protocol of MIDI, and analysis was carried

out as described by Komagata and Suzuki [10] with cells

grown on MA medium for 2 days at 30 �C. The MIDI

version was Sherlock version 6.0, and the library was

TSBA6 6.00. Polar lipids were measured by two-dimen-

sional TLC, using the Merck silica gel 60F254 plates (10

by 20 cm), with chloroform–methanol–water (65:25:4, vol/

vol) in the first dimension and chloroform–methanol–acetic

acid–water (80:12:15:4, vol/vol) in the second dimension.

Lipid spots were revealed by spraying the plates with 10 %

molybdophosphoric acid in ethanol for phospholipids, and

5 % a-naphthol in concentrated sulfuric acid–ethanol (1:1,

vol/vol) for glycolipids, followed by heating at 150 �C for

3–5 min [2, 7].

16S rRNA Gene Analysis and PCR Amplification

The 16S rRNA gene of strain JLT2012T was amplified

using universal bacterial primers [4]. Phylogenetic analysis

based on 16S rRNA gene sequences was performed as

described by Kim et al. [9]. To determine the approximate

phylogenetic affiliation, the 16S rRNA gene sequence of

strain JLT2012T (1450 bp, GenBank accession number:

JX878395) was compared with those available from the

GenBank database by using the EzTaxon-e [8]. Phyloge-

netic analysis (with neighbor-joining, maximum-likeli-

hood, and maximum-parsimony algorithms) was performed

using BioEdit [6], and phylogenetic trees were constructed

by using the neighbor-joining, maximum-parsimony, and

maximum-likelihood methods within the software MEGA

version 5 [24]. Distances and clustering obtained via the

neighbor joining [19].
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Results and Discussion

Phenotypic and Chemotaxonomic Characteristics

Growth of strain JLT2012T occurred at 10–45 �C (opti-

mum 30 �C), at pH 5–10 (optimum, pH 5–8) and in

0.5–4 % NaCl (w/v) (optimum 2 %). After incubation at

25 �C for 2 days on the MA, the colonies appeared as

orange pigment and were circular with a diameter of

1–2 mm, as well as convex and shaped with intact margins.

The cells were rod shaped, devoid of flagella with gliding

motility, and catalase and oxidase positive. The results of

the physiological characterization are summarized in

Table 1 with the following species description: Strain

JLT2012T and the type strain of P. flava JLT2015T were

Gram negative, orange colored, and rod shaped; growth

occurred optimally at 2 % NaCl; they were positive for

activity of the alkaline phosphatase, esterase (C4), esterase

lipase (C8), leucine arylamidase, valine arylamidase,

cystine arylamidase, trypsine, acid phosphatase, Naphthol-

AS-BI-phosphohydrolase, N-acetyl-b-glucosaminidase,

and Voges–Proskauer reaction. Furthermore, both the

strains were negative for the hydrolysis of starch and

gelatin; nitrate reduction; H2S and indole production;

Table 1 Characteristics that distinguish strain JLT2012T from P. flava JLT2015T

Characteristic JLT2012T P. flava

JLT2015Ta

Growth conditions

Temperature (�C)
Range 10–40 20–30

Optimum 30 25

pH

Range 5–10 5–12

Optimum 5–8 5–11

NaCl concentration (%)

Range 0.5–4 0.5–7

Biochemical properties

Poly-b-hydroxyalkanoate 2 1

API 20NE tests

Oxidase ? 2

Utilization gelatin and gluconate ? 2

Enzymic activity (API ZYM)

Lipase (C14) 2 ?

Acid production from (API 20E)

Sucrose 2 ?

Gelatin ? 2

Assimilation of

Potassium gluconate ? 2

Susceptibility to

Ampicillin, carbenicillin, chloromycetin, gentamicin, kanamycin ? 2

Oxidation of (Biolog GN2)

Acetic acid, i-erythritol, glycogen, lactulose, methyl pyruvate, 2 ?

D-Galactose, D-raffinose, D-trehalose, turanose, a-keto glutaric acid, L-alanine, L-alanyl-glycine, L-glutamic

acid, L-aspartic acid, hydroxy-L-proline

? 2

Both strains were Gram negative, orange colored, and rod shaped; growth occured optimally at 2 % NaCl; they were positive for activity of

alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsine, acid phos-

phatase, Naphthol-AS-BI-phosphohydrolase, N-acetyl-b-glucosaminidase, and Voges–Proskauer reaction. Furthermore, all strains are negative

for hydrolysis of starch, gelatin; nitrate reduction; H2S and indole production; assimilation of D-mannose, capric acid, malic acid, and trisodium

citrate; acid production from glucose, mannitol, inositol, sorbitol, rhamnose, sucrose, and amygdalin; and activity of lipase (C14), cystine

arylamidase, trypsine, a-galactosidase, b-galactosidase, b-glucuronidase, b-glucosidase, N-acetyl-b-glucosaminidase, a-mannosidase, and b-
fucosidase

? positive, 2 negative, ND no data available
a Data of P. flava JLT2015T were obtained from our previous work [13]
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assimilation of D-mannose, capric acid, malic acid, and

trisodium citrate; acid production from glucose, mannitol,

inositol, sorbitol, rhamnose, sucrose, and amygdalin; and

activity of lipase (C14), cystine arylamidase, trypsine, a-
and b-galactosidase, b-glucuronidase, b-glucosidase, N-

acetyl-b-glucosaminidase, a-mannosidase, and b–fucosi-
dase. Strain JLT2012T was susceptible to ampicillin, car-

benicillin, chloromycetin, gentamicin, and kanamycin and

found to be positive for the utilization of gelatin and glu-

conate, as well as acid production from gelatin and

assimilation of potassium gluconate. Only the strain

JLT2015T could produce acid from sucrose and utilize

acetic acid, i-erythritol, glycogen, lactulose and methyl

pyruvate, and tested positive for the lipase activity

(Table 1). However, only JLT2012T strain could utilize D-

galactose, D-raffinose, D-trehalose, turanose, a-keto glutaric

acid, L-alanine, L-alanyl-glycine, L-glutamic acid, L-aspar-

tic acid, and hydroxy-L-proline (Table 1).

The major polar lipids of strain JLT2012T were

diphosphatidylglycerol, phosphatidylethanolamine, phos-

phatidylglycerol, sphingoglycolipids, and several other

unknown glycolipids (Supplementary Fig. S2). The G ? C

content of strain JLT2012T DNA was determined to be

65.5 mol%. Similar to the reference type strain of the

genus Pacificimonas, the predominant respiratory quinone

in strain JLT2012T was found to be Q-10. The dominant

cellular fatty acids of JLT2012T were summed feature 8

(C18:1x7c and/or C18:1x6c), C16:0, and C18:0 (Table 2). The

fatty acids C17:0, anteiso-C15:0 and C17:1 x6c were detected
only in cells of strains JLT2012T, whereas iso-C13:0 3-OH,

C16:1 x5c, C16:0 N alcohol, anteiso-C17:0, and C19:0 cyclo

x8c were found only in cells of the Pacificimonas refer-

ence type strain (Table 2).

Phylogenetic Analysis

Phylogenetic distances and clustering obtained via the

neighbor-joining method [18] are shown in Fig. 1. The

phylogenetic tree indicated that the strain JLT2012T falls

within the Sphingomonadaceae family formed a coherent

cluster with P. flava JLT2015T [13]. Similar results were

obtained using the maximum-parsimony and maximum-

likelihood methods (Fig. 1). A comparative 16S rRNA

gene sequencing analysis revealed that JLT2012T bac-

terium shared 96.0 % sequence similarity with P. flava.

Taxonomic Conclusions

Strain JLT2012T exhibited 96.0 %16S rRNAgene sequence

similarity with P. flava JLT2015T [13]. The phylogenetic

association of strain JLT2012T with the reference type

strains of members of the genus Pacificimonas is consistent

as indicated by the neighbor-joining, maximum-parsimony,

and maximum-likelihood trees (Fig. 1). Strain JLT2012T is

distinguishable from the reference type strains of the genus

Pacificimonas based on the differences in their polyphasic

taxonomic characterizations including substrates used as

sole sources of carbon and energy (Table 1), the temperature

and NaCl concentration required for the optimum growth,

acid production from sucrose and gelatin, enzymatic activity

of lipase, susceptibility to antibiotics, DNA G ? C content

and fatty acid composition.

Based on the data from this polyphasic study, strain

JLT2012T represents a novel species and should be clas-

sified in the existing genus Pacificimonas. We, therefore,

propose a name Pacificimonas aurantium sp. nov. for this

newly identified bacterium.

Description of Pacificimonas aurantium sp. nov.

Pacificimonas aurantium sp. nov. (au’.ran.ti’.um. L. fem.

adj. aurantium. orange colored, colony color of the type

strain).

Table 2 Fatty acid compositions (%) of genus strain JLT2012T and

P. flava JLT2015T

Fatty acids JL2012T P. flava JL2015Ta

C12:0 1.1 3.9

C14:0 2.9 3.2

C16:0 21.3 17.3

C17:0 1.6 –

C18:0 15.9 8.4

iso-C13:0 3-OH – 0.6

C14:0 2-OH 4.1 9.7

C15:0 2-OH 1.1 –

C15:0 3-OH 2.4 1.5

C15:0 anteiso – 2.0

C16:1 x5c – 2.1

C17:1 x6c 7.1 –

C18:1 x9c 2.5 1.2

C16:0 N alcohol – 1.0

Anteiso-C17:0 – 0.7

C19:0 cyclo x8c – 4.2

Summed feature 3 5.4 14.1

Summed feature 8 34.7 30.2

Summed features are groups of two or three fatty acids that cannot be

separated by GLC with the MIDI System. Summed feature 3, C16:1

x7c and/or C16:1 x6c; Summed feature 8, C18:1x7c and/or C18:1x6c

Values are percentages of total fatty acids; values \0.5 % are not

shown. - Not detected
a Data of P. flava JLT2015T was obtained from our previous work

[13]
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Cells of strain JLT2012T were Gram-negative, aerobic,

and motile rods approximately 0.6–0.8 9 1.8–4.5 mm in

size (Supplementary Fig. S1). Colonies were orange, cir-

cular, convex, and opaque on MA medium. Growth

occurred between 10 and 45 �C (optimum, 30 �C), between
salinities of 0–4 % (w/v) NaCl (optimum, 2 % NaCl), and

between pH 5 and 10 (optimum, pH 5–8). Strain JLT2012T

was positive for catalase and oxidase. PHAs granules are

not produced. Gelatin is hydrolyzed, but DNA, starch,

casein, and urea are not. Indole or H2S production is not

detected. Nitrate and nitrite are not reduced. In API ZYM

enzyme reactions, alkaline phosphatase (Supplementary

Table S1), esterase (C4), esterase lipase (C8), leucine

arylamidase, valine arylamidase, cystine arylamidase,

trypsine, acid phosphatase, naphthol-AS-BI-phosphohy-

drolase, and N-acetyl-b-glucosaminidase are present.

According to API 20E and 20NE tests (Supplementary

Tables S2 and S3), positive reactions are seen for Voges–

Proskauer reaction, gelatinase, and assimilation of potas-

sium gluconate. According to Biolog GN2 tests (Supple-

mentary Table S4), the following substrates are oxidized:

dextrin, Tween 40, Tween 80, D-fructose, D-galactose, a-D-
glucose, D-raffinose, D-trehalose, turanose, b-hydroxy
butyric acid, a-keto glutaric acid, L-alanine, L-alanyl-gly-

cine, L-aspartic acid, L-glutamic acid, glycyl-L-glutamic,

hydroxy-L-proline, L-proline, L-pyroglutamic acid, L-ara-

binose, D-cellobiose, D-mannitol, mono-methyl-succinate,

D-gluconic, c-hydroxy butyric acid, D,L-lactic acid, succinic

acid, D,L-carnitine, c-Amino butyric acid, 2-aminoethanol,

glycerol, 2,3-butanediol, and glucose-6-phosphate. It is

susceptible to ampicillin (10 lg), carbenicillin (100 lg),

chloramphenicol (5 lg), gentamicin (10 lg), kanamycin

(30 lg), penicillin (10 lg), rifampicin (5 lg), and novo-

biocin (5 lg). Major fatty acids are summed feature 8

(C18:1x7c and/or C18:1x6c) (34.7 %), C16:0 (21.3 %),

C18:0 (15.9 %), and C17:1x6c (7.1 %) (together

representing 79.0 % of the total) (Table 2). The predomi-

nant polar lipids are diphosphatidylglycerol, phos-

phatidylethanolamine, phosphatidylglycerol, and four

sphingoglycolipid (Supplementary Fig. S2). Spermidine

and spermine are predominant in the polyamine pattern.

The respiratory lipoquinone is ubiquinone Q-10. The DNA

G ? C content of the type strain is 65.5 mol%.

The type strain is JLT2012T (=LMG 27361T=CGMCC

1.12399T), isolated from seawater of the Southeastern

Pacific Ocean.
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