Contents lists available at ScienceDirect

Developmental and Comparative Immunology

journal homepage: www.elsevier.com/locate/dci

Metabolic product response profiles of *Cherax quadricarinatus* towards white spot syndrome virus infection

CrossMark

Weiwei Fan ^{a, b}, Yangfang Ye ^a, Zhen Chen ^b, Yina Shao ^a, Xiaolu Xie ^b, Weiwei Zhang ^a, Hai-peng Liu ^{b, *}, Chenghua Li ^{a, **}

^a School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China

^b State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, Fujian, PR China

ARTICLE INFO

Article history: Received 31 December 2015 Received in revised form 5 April 2016 Accepted 6 April 2016 Available online 8 April 2016

Keywords: Cherax quadricarinatus WSSV Metabolomics Gill Hepatopancreas

ABSTRACT

White spot syndrome virus (WSSV) is one of the most devastating viral pathogens in both shrimp and crayfish farms, which often causes disease outbreak and leads to massive moralities with significant economic losses of aquaculture. However, limited research has been carried out on the intrinsic mechanisms toward WSSV challenge at the metabolic level. To gain comprehensive insight into metabolic responses induced by WSSV, we applied an NMR approach to investigate metabolic changes of crayfish gill and hepatopancreas infected by WSSV for 1, 6 and 12 h. In gill, an enhanced energy metabolism was observed in WSSV-challenged crayfish samples at 1 h, as marked by increased glucose, alanine, methionine, glutamate and uracil. Afterwards, energy metabolism, lipid metabolism as well as osmoregulation were markedly increased at 6 hpi, as shown by elevated glucose, alanine, methionine, fumarate, tyrosine, tryptophan, histidine, phosphorylcholine, betaine and uracil, whereas no obvious metabolites change was detected at 12 hpi. As for hepatopancreas, disturbed lipid metabolism and induced osmotic regulation was found at 6 hpi based on the metabolic biomarkers such as branched chain amino acids, threonine, alanine, methionine, glutamate, glutamine, tyrosine, phenylalanine, lactate and lipid. However, no obvious metabolic change was shown in hepatopancreas at both 1 hpi and 12 hpi. Taken together, our present results provided essential metabolic information about host-pathogen interactions in crayfish, which shed new light on our understanding of WSSV infection at metabolic level.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

White spot syndrome virus (WSSV), initially appeared in Southeast Asia at the beginning of the 1990s, has provoked diminished shrimp production in commercial shrimp farms (Liu et al., 2009). Because of its wide host range of marine and brackish water crustaceans, including shrimp, crab, lobster and crayfish, this virus often leads to serious economic losses to aquaculture worldwide (Liu et al., 2011; Paz, 2010). To date, there is no effective treatment available for WSSV infection. Hence, it is necessary to make a thorough inquiry into the host molecular response to WSSV infection. Research related to the changes post WSSV infection in shrimp and crayfish has made great progress with the application of genomics and proteomics (Chai et al., 2010; Jeswin et al., 2016; Li et al., 2013b, 2014; Liu et al., 2011; Wang et al., 2007; Zhao et al., 2007). On the other hand, the metabolic analysis can indicate the biochemical state of the cells, organs and tissues, and manifests the correlation among the biological metabolic networks, thus helping people to understand the influence of virus invasion into the host. It is worthwhile noting that there are limited researches concentrated on the metabolic study post WSSV infection. Chen et al. detected that WSSV infection had significant effects on the levels of glucose and lactate in shrimp plasma at 12 hpi, associating with other experiment results they put forward: WSSV infection could induce the mammalian Warburg effect (Chen et al., 2011). Further research on the metabolic changes in WSSVchallenged shrimp hemocytes confirmed this Warburg effect and

^{*} Corresponding author. State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, PR China.

^{**} Corresponding author. 818 Fenghua Road, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.

E-mail addresses: haipengliu@xmu.edu.cn (H.-p. Liu), lichenghua@nbu.edu.cn (C. Li).

also proposed that this Warburg effect in shrimp hemocytes benefited the virus to meet its requirements during genome replication (Su et al., 2014).

Previous research mainly concentrated on the metabolic changes of hemocytes after WSSV stimulation, studies about the metabolic changes of other tissues were scarcely investigated in WSSV infected shrimp. It is generally known that gill is the respiratory organ of crustaceans, viruses in the hemolymph are absorbed mainly by gill and then induce changes in the physiological function in this organ (Wang et al., 2012), which is a target organ of WSSV infection that plays an important role in immune response (Ren et al., 2015). Besides, the hepatopancreas of crustaceans also have various functions, such as energy and lipid metabolism and indicator of nutritional status (Wang et al., 2008). The gill and hepatopancreas are thus ideal organs to investigate metabolic changes towards WSSV infection. It has been reported that progeny WSSV virions have been clearly detected in the nucleus of infected Hpt cells in vivo from crayfish Procambarus clarkii as early as 12 hpi (Wu et al., 2015). Also, the red claw crayfish Cherax quadricarinatus Hpt cells in vitro were responsive to WSSV infection both in gene and protein level at 1 hpi and 12 hpi as the early and late infection stages, respectively, in which the relative increase of nucleoside and the enhanced amino acid metabolites were detected at 12 hpi, implying that the DNA replication machinery might be sequestered to produce viral DNA and protein synthesis, therefore 12 hpi was defined as late infection stage (Liu et al., 2011; Jeswin et al., 2016), which was similar to shrimp (Li et al., 2015). Hence, the time intervals of 1, 6 and 12 hpi for the early, middle and late stage of WSSV infection accordingly were selected in our present study. Additionally, understanding of the metabolic response in these tissues during different infection stages would be helpful for future WSSV disease control.

Till now, metabonomics has been applied to identify and quantify the variation of endogenous metabolites. NMR-based metabonomics is one of the main techniques for metabolomics study with advantage of outstanding reproducibility, simple pre-treatment, high throughput and nondestructive testing. In addition, it has been well-illustrated that ¹H NMR metabolic method provides a legible and convenient way to learn the metabolic changes induced by xenobiotic, especially by virus in animal tissues (Azmi et al., 2005; Huang et al., 2013). To obtain the biological response induced by WSSV infection, we explored the metabolic changes of crayfish gill and hepatopancreas post WSSV infection by using ¹H NMR in the present study.

2. Materials and methods

2.1. Purification of intact WSSV viral particles

Healthy Procambarus clarkii was collected and used for amplification of WSSV. The infection, proliferation and purification of virus were performed according to Xie et al. (2005). Briefly, all the tissues of infected crayfish excluding hepatopancreas were collected and homogenized in TNE buffer (50 mM Tris-HCl, 400 mM NaCl, 5 mM EDTA, pH 8.5), then centrifuged at 3500 g for 5 min at 4 °C to remove the remaining tissues. After filtration by nylon net (400 mesh), the supernatant was centrifuged at 30,000 g for 30 min at 4 °C. Then, the upper loose pellet was rinsed out carefully and the lower white pellet was suspended in 2 mL TN buffer (50 mM Tris-HCl, 10 mM NaCl, pH 7.4). After centrifugation at 3500 g for 5 min, the supernatant was centrifuged again at 30,000 g for 20 min at 4 °C to deposit virus particles, and then resuspended and kept them in 1 mLTN buffer. The purity degree of isolated virus was evaluated by negative-staining transmission electron microscopy (TEM) and the concentrated virus was quantified by the

competitive PCR described by Xu et al. (2001).

2.2. Crayfish infected by WSSV and tissue samples harvested for metabolic analysis

Sixty healthy adult male intermolting red claw crayfish *C. quadricarinatus* (15–18 cm in length and 90–110 g in weight) were purchased from Hangzhou, Zhejiang Province, China. After acclimation, they were infected with live WSSV (10⁵ copy of virions/ crayfish) by injection via the base of the fourth walking leg and served as experimental group. Crayfish injected with crayfish saline solution (CFS; 0.2 M NaCl, 5.4 mM KCl, 10 mM CaCl₂, 2.6 mM MgCl₂, 2 mM NaHCO₃, pH 6.8) were used as a mock infection and considered as control group. Gill and hepatopancreas were dissected from individuals at 1, 6 and 12 h post infection and quickly frozen by liquid nitrogen before metabolite extraction. Ten replicates were performed for each experimental sample from different time points as well as controls.

2.3. Metabolite extraction

Aqueous metabolites of *C. quadricarinatus* (n = 10 for each treatment) gill and hepatopancreas were extracted according to the protocol described by Ye et al. (2014). In brief, each sample (approximately 400 mg wet weight) was homogenized with 600 μ L of ice-cold extract solution (methanol: milli Q = 2:1, v/v) for 30 s at 5000 rpm for 5 times. Supernatant was collected respectively after centrifugation (12,000 rpm, 10 min, 4 °C). The remaining solid residues were extracted once again as above. Then the mixed two supernatants with aqueous metabolites were dried in a centrifugal concentrator to remove methanol. The extracts were then dissolved in 600 μ L of Na⁺-K⁺ phosphate buffer (0.15 M NaH₂PO₄/K₂HPO₄, pH 7.4, containing 30% D₂O and 0.001% TSP) (Xiao et al., 2009). Following centrifugation (12,000 rpm, 10 min, 4 °C), a total of 550 μ L supernatant was transferred into 5 mm NMR tubes (Norell, ST500-7, USA) for NMR detection.

2.4. NMR spectroscopy

All of ¹H NMR spectra of gill and hepatopancreas extracts were recorded at 298 K with a ¹H resonance frequency of 600.13 MHz by using a Bruker Avance III 600 MHz spectrometer (Bruker, Biospin, Germany) (Ding et al., 2014). For all of the extracts, we applied a nuclear overhauser effect spectroscopy (NOESY) pulse sequence (recycle delay (RD)-90°- t_1 -90°- t_m -90°-acquisition) to suppress the residual water signal with RD, t_1 and mixing time (t_m) of 2 s, 4 µs and 100 ms, respectively. To assign the NMR signals, we also detected a range of two-dimensional NMR spectra for selected samples, including ¹H-¹H COSY, ¹H *J*-resolved, ¹H-¹H TOCSY, ¹H-¹³C HMBC and ¹H-¹³C HSQC (Aue et al., 1976a, 1976b; Braunschweiler and Ernst, 1983).

2.5. Statistical analysis

All the 1D and 2D NMR spectra were processed with corresponding software and further analyzed according to the previous method (Cloarec et al., 2005; Eriksson et al., 2008; Trygg and Wold, 2002). Multivariate data analysis was carried out on the gill and hepatopancreas of *C. quadricarinatus* between control and WSSVinfected group to test the phenotype metabolic change (Trygg et al., 2006). Following analysis by unsupervised PCA method, the metabolite alterations were detected using OPLS-DA with R²X and Q², two indicators about the quality of these models. Then each model was further evaluated with the CV-ANOVA approach (p < 0.05). OPLS-DA loading plots, which successfully pass this test can visually display the changed metabolites in gill and hepatopancreas extracts infected by WSSV at different time points.

3. Results and discussion

3.1. ¹H NMR spectra of C. quadricarinatus gill and hepatopancreas

Typical ¹H NMR spectra derived from gill and hepatopancreas were shown in Fig. S1 and Fig. S2, respectively. Combing these and a series of coupled information provided by 2D NMR spectra, metabolites were assigned. In gill, a total of 35 specific metabolites were identified including a range of amino acids, aliphatic organic acids, glucose, betaine, nucleotide and pyrimidine (Table 1). The detectable metabolites of hepatopancreas covered a range of amino acids, organic acids, glucose, betaine and lipid (Table 1). To acquire more details about the active WSSV-induced metabolomic changes, we conducted multivariate data analysis on the NMR data for gill and hepatopancreas extracts.

3.2. Gill metabolomic responses challenged by active WSSV

Through analyzing, only two of the OPLS-DA models passed the rigorous test of CV-ANOVA. These two models and their corresponding OPLS-DA coefficient-coded loading plots were illustrated in Fig. S3. Our results showed that infection of WSSV for 12 h had no significant effect on the gill metabolome. However, active WSSV

Table 1

NMR data of metabolites detected in crayfish gill and hepatopancreas extracts.

Key	Metabolites	Moieties	$\delta^1H(\text{ppm})$ and multiplicity^a	δ ¹³ C (ppm)	Tissues			
1	Isoleucine	αCH, βCH, γCH ₂ , γ'CH ₂ , δCH ₂	3.67(d), 1.98(m), 1.26(m), 1.48(m), 1.01(d), 0.94(t)	62.4, 38.7, 27.0, 17.5, 14.0	G, H			
2	Leucine	αCH, βCH ₂ , γCH, δCH ₃ , δ'CH ₃	3.74(m), 1.73(m), 1.69(m), 0.98(d), 0.96(d)	56.2, 42.6, 26.7, 24.6, 23.7	G, H			
3	Valine	αCH, βCH, γCH ₃ , γ'CH ₃	3.62(d), 2.28(m), 0.99(d), 1.04(d)	63.1, 31.7, 19.3, 20.8	G, H			
4	Lactate	αCH, βCH ₃ , COOH	4.12(q), 1.33(d)	71.3, 22.5, 185.5	G, H			
5	Threonine	α CH, β CH, γ CH ₃	3.58(d), 4.26(m), 1.33(d)	69.0, 63.3, 22.5	G. H			
6	Alanine	αCH. CH₃, COOH	3.79(q), 1.49(d)	53.2. 19.2. 178.6	G. H			
7	Acetate	CH₂, COOH	1.92(s)	26.4. 184.0	G. H			
8	Methionine	αCH, β CH ₂ , γ CH ₂ , S=CH ₂	3.87, 2.16, 2.65(t), 2.14(s)	56.7, 32.8, 31.4, 16.7	G, H			
9	Glutamate	αCH, βCH ₂ , γCH ₂ , δCO	3.77(m), 2.12(m), 2.05(m), 2.36(dt)	57.4, 29.8, 36.4, 183.9	G, H			
10	Succinate	CH ₂ , COOH	2.41(s)	37.1. 184.3	G. H			
11	Glutamine	$CH_2 \gamma CH_2$	2.14(m) 2.46(m)	33.8	GH			
12	Aspartate	$\alpha CH \beta CH_2 \gamma COOH$	3.92(dd) 2.82(dd) 2.68(dd)	551 397 1801	G			
13	Asnaragine	α CH CH ₂ α CONH ₂ COOH	400(dd)287(dd)296(dd)	54 3 37 6 176 3 177 3	C.			
14	Lysine	CH CH ₂ , CH ₂ aCH ₂ econ	3.76(t) 1.92(m) 1.48(d) 1.73(m) 3.03(t)	569 326 239 291 421 1783	СН			
15	Choline-O-sulfate	α CH ₂ , CH ₂ , γ CH ₂	4 33 3 69 3 12(s)	69.5, 55.6	G, II			
16	Phosphorylcholine	αCH_2 , βCH_2 , $N = CH_2$	4 26 3 59 3 21(s)	70.4 56.7	СН			
17	Choline	αCH_2 , βCH_2 , $N = CH_2$	4 07 3 53 3 23(s)	68 9 63 4 56 8	с, н			
18	Arginine	CH ₂ , CH ₂ , ACH ₂	1.07, 3.53, 5.25(3) 1.92(m) 1.66(m) 1.73(m) 3.25(t)	30.2 264 434 1599 1775	C H			
10	Arginnic	еС. COOH	1.52(11), 1.00(11), 1.73(11), 5.23(1)	30.2, 20.4, 43.4, 133.3, 177.5	G, 11			
19	Betaine	CH ₃ , CH ₂ , COOH	3.27(s), 3.91(s)	56.2. 69.1. 171.9	G. H			
20	U1	5, 2,	3.42(s)	57.9, 102.3	G, H			
21	Taurine	CH2SO3, CH2NH2	3.27(t), $3.43(t)$	50.4, 38.4	G. H			
22	Glvcine	αCH ₂ , COOH	3.57(s)	44.5, 175.3	G. H			
23	β-Glucose	C ₁ H, C ₂ H, C ₃ H, C ₄ H, C ₅ H, C ₆ H	4.67(d), 3.25(t), 3.48(dd), 3.40(m), 3.46(m), 3.89(m), 3.73(m)	98.8, 77.1, 78.6, 72.8, 78.6, 63.8	G, H			
24	α-Glucose	C1H, C2H, C3H, C4H, C5H, C6H	5.24(d), 3.54(dd), 3.71(m), 3.40(m), 3.82(m), 3.83(m)	95.0, 74.0, 75.0, 72.8, 74.5, 63.8	G. H			
25	Uracil	C_2, C_4, C_5H, C_6H	5.81(d), 7.54(d)	156.1, 170.8, 103.4, 146.7	G			
26	Uridine	$C_2, C_4, C_5H, C_6H, C_1'H, C_2'H$	5.91(d), 7.88(d), 5.92(d), 4.32	154.7, 169.4, 105.1, 144.6, 92.1, 76.2	G. H			
27	Uridine	C ₂ H. C ₄ H. C ₆ . C ₁ 'H. C ₂ 'H. C ₂ 'H. C ₄ 'H. C ₅ 'H.	5.97(d), 7.95(d), 5.99(d), 4.39(m), 4.36(m), 4.28(m),	105.4, 144.3, 154.6, 91.1, 76.5, 72.3,	G			
2,	diphosphate-N- acetylglucosamine (UDP-GlcNAc)	G ₁ H, G ₂ H, G ₃ H, G ₄ H, G ₅ H, G ₆ H ₂ , CO, CH ₃	4.23/4.17(m), 5.52(dd), 3.99(m), 3.81(m), 3.56(dd), 3.91(m), 3.84(dd), 2.07(s)	85.6, 67.7, 97.2, 56.2, 73.5, 72.1, 75.6, 62.8, 25.0, 177.6				
28	Fumarate	COOH, CH	6.53(s)	177.5, 138.1	G. H			
29	Tyrosine	COOH COOH COOH	3.95(dd), 3.2(dd), 3.06(dd), 7.2(d), 6.90 (d)	58.8, 38.4, 129.5, 133.6, 118.8, 157.5, 177.1	G, H			
30	Histidine	C_2H, C_3, C_4H	7.93(d), 7.11(d)	138.8, 133.7, 120.0	G			
31	Phenylalanine	αCH, β CH ₂ , C ₁ , RingC _{2,6} H, RingC _{3,5} H, RingC ₄ Ring COOH	4.00(dd), 3.13(dd), 3.29(dd), 7.33(q), 7.43(t), 7.38(m)	59.1, 39.4, 137.9, 132.3, 132.1, 130.7, 177.1	G, H			
32	Tryptophan	β CH ₂ , Ring C ₂ H, Ring C ₃ , Ring C ₄ H, Ring C ₅ H, Ring C ₆ H, Ring C ₇ H, Ring C ₈ , Ring C ₉	3.23(dd), 3.47(dd), 7.33(s), 7.28(m), 7.19(m), 7.73(d), 7.54(d)	29.4, 128.1, 110.2, 125.0, 122.4, 121.3, 114.5, 139.2, 129.6	G, H			
33	Inosine	C ₂ H, C ₄ , C ₅ , C ₆ , C ₈ H, C ₁ 'H, C ₂ 'H	8.23(s), 8.34(s), 6.10(d), 4.77, 4.44(dd)	149.3, 151.4, 127.0, 161.7, 143.1, 91.0, 76.7, 73.4	G, H			
34	Maltose	C ₄ H, C ₇ H	3.64(m), 5.42(d), 3.59(m)	79.6, 102.6	G			
35	Sugar and amino acids α-CH resonance	αCH resonances	3.25-4.0		G, H			
36	Lipid	CH_3 , $(CH_3)_n$	0.87(m), 1.28(m)		Н			
37	Sarcosine	N-CH ₃	2.79(s)	36.0. 47.4	G. H			
38	Dimethylglycine	N-CH ₃	2.92(s)	45.9. 55.6	G. H			

^a Multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triples; m, multiplet.

Table 2

Significantly altered metabolites in crayfish gill and hepatopancreas extracts with WSSV infection.

Metabolites	δ (ppm)	Correlation coefficient $(r)^a$, $ r > 0.602$, $p < 0.05$		
		Gill		Hepatopancreas
		1 h	6 h	6 h
isoleucine	1.01(d)	_	_	0.78
leucine	0.96(d)	_	_	0.81
valine	1.04(d)	_	_	0.78
lactate	1.33(s)	_	_	0.76
alanine	1.49(d)	0.76	0.77	0.74
methionine	2.14(s)	0.65	0.68	0.76
glutamate	2.36(dt)	0.82	_	0.78
phosphorylcholine	3.21(s)	_	0.78	_
betaine	3.27(s)	_	0.83	_
glucose	4.67(d)	0.78	0.96	_
uracil	5.81(d)	0.73	0.94	_
fumarate	6.53(s)	_	0.78	_
tyrosine	6.90(d)	_	0.68	0.75
histidine	7.11(d)	_	0.69	_
phenylalanine	7.43(t)	_	_	_
tryptophan	7.73(d)	_	0.77	_
inosine	8.34(s)	0.92	_	_
threonine	4.26(m)	_	_	0.74
glutamine	2.46(m)	_	_	0.78
phenylalanine	7.43(t)	_	_	0.79
lipid	0.87(m)	_b	_ b	0.72

^a The correlation coefficients shown are based on OPLS-DA analysis of a two-class model, r values indicate an increase of metabolite in the W group relative to control strain. '-'' means the correlation coefficient |r| is less than cutoff value.

^b The metabolite is not detected.

infection led to significantly increased levels of inosine, glucose and uracil, as well as three amino acids (glutamate, alanine and methionine) in the first 1 h post infection (Table 2; Fig. S3). In comparison with 1 hpi, 6 hpi of active WSSV infection caused more extensive alterations of metabolites. The levels of glucose, uracil, betaine, phosphorylcholine and fumarate were markedly increased, along with five amino acids including alanine, tryptophan, histidine, tyrosine and methionine (Table 2; Fig. S3).

The NMR data manifested that some metabolites concerning important host pathways, including glycolysis (glucose), nucleotide metabolism (uracil and inosine), amino acid biosynthesis (alanine, valine, leucine and isoleucine) and the TCA cycle (fumarate) were up-regulated. Compared with control group, glucose were elevated in gill post infection for 1 h and 6 h (Table 2; Fig. S3), indicating the promotion of glycolysis. Su et al. also detected a significant increase of glucose in WSSV-injected shrimp hemocytes at 12 hpi, what is more, other metabolites related to glycolysis were at a high level as well (Su et al., 2014). Likewise, glucose was elevated in shrimp plasma infected by IHHNV for 7 d, might because it was used as an energy source by shrimp to immediately impulse the activation of immune response to control the virus' replication (Alvarez et al., 2012). Another prominent finding was a rise in the fumarate level after infection for 6 h (Table 2; Fig. S3). The increase of fumarate, which is an intermediate metabolite of TCA cycle means TCA is enhanced. Taken together, we could conclude the energy metabolism was enhanced post infection, which on the one hand showed host immune was activated to eliminate virus, on the other hand the enhanced energy metabolism in return contributed to WSSV infection.

Meanwhile, the results mirrored an enhanced production of amino acid and nucleotide biosynthesis metabolism (uracil and inosine) after WSSV infection (Table 2; Fig. S3). Inosine is a naturally occurring purine formed from the breakdown of adenosine. These boosts occurred presumably because it favored viral genome replication and protein synthesis. Su et al. reported that WSSV infection induced an increase in several of the detected amino acids, including alanine, aspartate, glutamate, histidine, proline and tryptophan in shrimp hemocytes at the early stage (12 hpi). They surmised that the strongly increased amino acid metabolites may be useful for protein synthesis and benefit viral genome replication (Su et al., 2014).

Interestingly, a marked increase in betaine level was observed at 6 hpi in gill (Table 2; Fig. S3). Betaine, one of the most abundant osmolytes in marine invertebrates participates in regulating osmotic balance between intracellular and external saline environments (Burg and Ferraris, 2008; Perrino and Pierce, 2000). It is generally known that gill has a role in transport and osmoregulatory functions (Ali et al., 2015), as the change of some metabolites triggered by the virus infection destroyed the stability of osmotic pressure, the betaine was increased to balance the osmotic pressure. WSSV infection of gill for 6 h also clearly caused a significant up-regulation of phosphorylcholine, which was related to choline metabolism and participated in membrane biosynthesis. As progeny WSSV virions were detected in the nucleus of infected crayfish Hpt cells as early as 12 hpi (Wu et al., 2015), furthermore, the transcript of one of the WSSV envelope protein VP28 started to be synthesized from 3 hpi in red claw crayfish Hpt cells (Liu et al., unpublished data). Other studies also reported that the transcripts of WSSV envelope proteins like wsv238 in crayfish Cambarus clarkii gill and VP12 in muscle of crayfish Cambarus clarkii could be detected from 2 hpi post WSSV infection (Lan et al., 2006; Li et al., 2013a). So we speculated that the improved choline metabolism might benefit virus envelope synthesis and therefore be in preparation for the progeny virus assembly.

3.3. WSSV infection induced hepatopancreas metabolomics changes

¹H NMR spectral data sets from hepatopancreas were also analyzed by PCA and OPLS-DA as those of gill extracts. Only one of the models passed the strict test of CV-ANOVA. The model and its corresponding OPLS-DA coefficient-coded loading plots are illustrated in Fig. S4. We did not detect metabolic changes at 1 hpi and 12 hpi, suggesting that WSSV had no significant effect on the hepatopancreas metabolome change after infection for 1 h and 12 h. Compared with the corresponding hepatopancreas collected from CFS-injected group, the WSSV-infected group showed a metabolic response at 6 hpi.

Hepatopancreas presented dramatically elevated metabolites including lactate and lipid, together with ten amino acids (alanine, valine, leucine, isoleucine, glutamate, glutamine, phenylalanine, tyrosine, threonine and methionine) (Table 2; Fig. S4). While Liu et al. found that glucose was elevated in company with acetate, lactate, *N*-acetyl glycoprotein signals, lysine, tyrosine, and lipid was significantly decreased in hepatopancreas of *L. vannamei* post WSSV infection at 48 hpi, which was defined as late infection stage (Liu et al., 2015). Due to the different infection stages, the metabolites were found to be various.

In our present study, the increased lactate which represented the improvement of glycolysis, accompanied with the elevated amino acids indicated energy metabolism was enhanced in hepatopancreas challenged by WSSV, as well as in gill. These variations "satisfied" the virus' requirement for energy during its genome replication and the energetic cost of activated crayfish immune responses (Wang et al., 2012a, 2012b). Combine this and the results of gill, we could hypothesize that glycolysis accounts for rapidly energy supply in gill and hepatopancreas during virus invasion.

Also, WSSV infection in hepatopancreas for 6 h caused a significant up-regulation of lipid (Table 2; Fig. S4), which acted as a source of energy and macromolecular precursors for envelope synthesis. Previous research indicated that hepatitis C virus replication was linked to host cholesterol synthesis (Kapadia and Chisari, 2005). Similarly, a marked increase in fatty acid biosynthesis occurred in MRC-5 fibroblasts after HCMV infection and inhibition of fatty acid biosynthesis suppressed the replication of enveloped viruses: HCMV and influenza A virus (Munger et al., 2008). Research also showed that most of the long chain fatty acids (LCFAs) were at extremely high level in the stomach cells of WSSV-infected shrimp at 24 hpi, what is more, C75 (fatty acid synthase inhibitor) damaged the new virion formation to a certain extent, therefore they speculated that WSSV appeared to induce lipid biosynthesis in order to support viral morphogenesis (Hsieh et al., 2015). Taken together, we could infer that WSSV may trigger the hepatopancreas cell lipid metabolism to fulfill its successful infection.

In summary, we observed the metabolic responses in crayfish gill and hepatopancreas infected by WSSV. The NMR data manifested that some metabolites concerning important host pathways, including glycolysis (e.g. glucose), nucleotide metabolism (e.g. uracil), amino acid biosynthesis (e.g. valine, leucine, isoleucine) and the TCA cycle (e.g. fumarate) were up-regulated. Besides, betaine and lipid also were found at drastically elevated levels. These findings provided a comprehensive insight into the metabolic responses of crayfish gill and hepatopancreas post WSSV infection, and our study also highlights the value of metabolomics in elucidating the host metabolic mechanisms towards pathogen infection.

Acknowledgments

This work was financially supported by National Basic Research Program of China (973 Program, No. 2012CB114403), NSFC (31222056, 41176114, 41476117), SFFPC (2013J06010), Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, and the K. C. Wong Magna Fund at Ningbo University.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.dci.2016.04.006.

References

- Ali, M.Y., Pavasovic, A., Mather, P.B., Prentis, P.J., 2015. Analysis, characterization and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish *Cherax quadricarinatus*. Gene 564, 176–187.
- Alvarez, G.D., Cano, M.F., López, H.J., Paz, S.A., 2012. Experimental evidence of metabolic disturbance in the white shrimp *Penaeus vannamei* induced by the Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV). J. Invertebr. Pathol. 111, 60–67.
- Aue, W.P., Bartholdi, E., Ernst, R.R., 1976a. Two-dimensional spectroscopy application to 259 nuclear magnetic-resonance. J. Phys. Chem. 64, 2229–2246.
- Aue, W.P., Karhan, J., Ernst, R.R., 1976b. Homonuclear broad-band decoupling and two-dimensional J-resolved NMR-spectroscopy. J. Phys. Chem. 64, 4226–4227.
- Azmi, J., Griffin, J.L., Shore, R.F., Holmes, E., Nicholson, J.K., 2005. Chemometric analysis of biofluids following toxicant induced hepatotoxicity: a metabonomic approach to distinguish the effects of 1-naphthylisothiocyanate from its products. Xenobiotica 35, 839–852.
- Braunschweiler, L., Ernst, R.R., 1983. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson 53, 521–528.
- Burg, M.B., Ferraris, J.D., 2008. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283, 7309–7313.
- Chai, Y.M., Yu, S.S., Zhao, X.F., Zhu, Q., Wang, J.X., 2010. Comparative proteomic profiles of the hepatopancreas in *Fenneropenaeus chinensis* response to white spot syndrome virus. Fish. Shellfish Immunol. 29, 480–486.
- Chen, I.T., Aoki, T., Huang, Y.T., Hirono, I., Chen, T.C., Huang, J.Y., Chang, G.D., Lo, C.F., Wang, H.C., 2011. White spot syndrome virus induces metabolic changes resembling the Warburg effect in shrimp hemocytes in the early stage of infection. J. Virol. 85, 12919–12928.
- Cloarec, O., Dumas, M.E., Trygg, J., Craig, A., Barton, R.H., Lindon, J.C., Nicholson, J.K., Holmes, E., 2005. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in ¹H NMR spectroscopic metabonomic studies. Anal. Chem. 77, 517–526.
- Ding, L.J., Chen, J.J., Zou, J.D., Zhang, L.M., Ye, Y.F., 2014. Dynamic metabolomic responses of *Escherichia coli* to nicotine stress. Can. J. Microbiol. 60, 547–556.
- Eriksson, L., Trygg, J., Wold, S., 2008. CV-ANOVA for significance testing of PLS and OPLS (R) models. J. Chemom. 22, 594–600.
- Hsieh, Y.C., Chen, Y.M., Li, C.Y., Chang, Y.H., Liang, S.Y., Lin, S.Y., Chang, S.H., Wang, Y.J., Khoo, K.H., Aoki, T., Wang, H.C., 2015. To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-Akt-mTOR-HIF1α pathway. Dev. Comp. Immunol. 53, 85–95.
- Huang, C., Lei, H., Zhao, X., Tang, H., Wang, Y., 2013. Metabolic influence of acute cyadox exposure on Kunming mice. J. Proteome Res. 12, 537–545.
- Jeswin, J., Xie, X.L., Ji, Q.L., Wang, K.J., Liu, H.P., 2016. Proteomic analysis by iTRAQ in red claw crayfish, *C. quadricarinatus*, hematopoietic tissue cells post white spot syndrome virus infection. Fish. Shellfish Immunol. 50, 288–296.
- Kapadia, S.B., Chisari, F.V., 2005. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. PNAS 102, 2561–2566.
- Lan, Y., Xu, X., Yang, F., Zhang, X., 2006. Transcriptional profile of shrimp white spot syndrome virus (WSSV) genes with DNA microarray. Arch. Virol. 151, 1723–1733.
- Li, J.B., Wu, J.J., Yang, F., 2013a. Study of white spot syndrome virus structural protein VP12. J. Appl. Oceanogr. 4, 517–523 (in Chinese).
- Li, S., Zhang, X., Sun, Z., Li, F., Xiang, J., 2013b. Transcriptome analysis on Chinese shrimp *Fenneropenaeus chinensis* during WSSV acute infection. PLoS One 8, e58627.
- Li, W.F., Desmarets, L.M.B., Gryse, G.M.A.D., Theuns, S., Tuan, V.V., Thuong, K.V., Bossier, P., Nauwynck, H.J., 2015. Virus replication cycle of white spot syndrome virus (WSSV) in secondary cell cultures from the lymphoid organ of *L. vannamei*. J. Gen. Virol. 96, 2844–2854.
- Liu, H.P., Söderhåll, K., Jiravanichpaisal, P., 2009. Antiviral immunity in crustaceans. Fish. Shellfish Immunol. 27, 79–88.
- Liu, H.P., Chen, R.Y., Zhang, Q.X., Peng, H., Wang, K.J., 2011. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, *Cherax quadricarinatus*, in response to WSSV infection. Dev. Comp. Immunol. 35, 716–724.
- Liu, P.F., Liu, Q.H., Wu, Y., Jie, H., 2015. A pilot metabolic profiling study in hepatopancreas of *Litopenaeus vannamei* with white spot syndrome virus based on ¹H NMR spectroscopy. J. Invertebr. Pathol. 124, 51–56.
- Li, W., Tang, X.Q., Xing, J., Sheng, X., Zhan, W., 2014. Proteomic analysis of differentially expressed proteins in *Fenneropenaeus Chinensis* hemocytes upon white spot syndrome virus infection. PLoS One 9, e89962.
- Munger, J., Bennett, B.D., Parikh, A., Feng, X.J., McArdle, J., Rabitz, H.A., Shenk, T., Rabinowitz, J.D., 2008. Systems-level metabolic flux profiling identifies fatty
- acid synthesis as a target for antiviral therapy. Nat. Biotechnol. 26, 1179–1186. Paz, S.A., 2010. White spot syndrome virus: an overview on an emergent concern. Vet. Res. 41, 43–76.
- Perrino, L.A., Pierce, S.K., 2000. Betaine aldehyde dehydrogenase kinetics partially account for oyster population differences in glycine betaine synthesis. J. Exp. Zool. 286, 238–249.
- Ren, Q., Huang, Y., He, Y.D., Wang, W., Zhang, X.B., 2015. A white spot syndrome virus microRNA promotes the virus infection by targeting the host STAT. Sci. Rep. 5, 18384.

- Su, M.A., Huang, Y.T., Chen, I.T., Lee, D.Y., Hsieh, Y.C., Li, C.Y., Ng, T.H., Liang, S.Y., Lin, S.Y., Huang, S.W., Chiang, Y.A., Yu, H.T., Khoo, K.H., Chang, G.D., Lo, C.F., Wang, H.C., 2014. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog. 10, e1004196.
- Trygg, J., Holmes, E., Lundstedt, T., 2006. Chemometrics in metabonomics. J. Proteome Res. 6, 469–479.
- Trygg, J., Wold, S., 2002. Orthogonal projections to latent structures (O-PLS). J. Chemom. 16, 119–128.
- Wang, H.C., Wang, H.C., Leu, J.H., Kou, G.H., Wang, A.H., Lo, C.F., 2007. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev. Comp. Immunol. 31, 672–686.
- Wang, L., Yan, B., Liu, N., Li, Y., Wang, Q., 2008. Effects of cadmium on glutathione synthesis in hepatopancreas of freshwater crab, *Sinopotamon yangtsekiense*. Chemosphere 74, 51–56.
- Wang, D.L., Zuo, D., Wang, L.M., Sun, T., Wang, Q., Zhao, Y.L., 2012. Effects of white spot syndrome virus infection on immuno-enzyme activities and ultrastructure in gills of *Cherax quadricarinatus*. Fish. Shellfish Immunol. 32, 645–650.
- Wang, X.Q., Wang, L.L., Zhang, H., Ji, Q.Z., Song, L.S., Qiu, L.M., Zhou, Z., Wang, M.Q., Wang, L.L., 2012a. Immune response and energy metabolism of *Chlamys farreri* under *Vibrio anguillarum* challenge and high temperature exposure. Fish. Shellfish Immunol. 33, 1016–1026.

- Wang, X.Q., Wang, L.L., Yao, C., Qiu, L.M., Zhang, H., Zhi, Z., Song, L.S., 2012b. Alternation of immune parameters and cellular energy allocation of *Chlamys farreri* under ammonia-N exposure and *Vibrio anguillarum* challenge. Fish. Shellfish Immunol. 32, 741–749.
- Wu, J.J., Li, F., Huang, J.J., Xu, L.M., Yang, F., 2015. Crayfish hematopoietic tissue cells but not hemocytes are permissive for white spot syndrome virus replication. Fish. Shellfish Immunol. 43, 67–74.
- Xiao, C.N., Hao, F.H., Qin, X.R., Wang, Y.L., Tang, H.R., 2009. An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization. Analyst 134, 916–925.
- Xie, X.X., Li, H.Y., Xu, L.M., Yang, F., 2005. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Res. 108, 63–67.
- Xu, L.M., Wang, W., Yang, F., 2001. Research of quantitative PCR detection technology of white spot bacilliform virus (WSBV). High. Technol. Let. 11, 14–16. Ye, Y.F., An, Y.P., Li, R.H., Mu, C.K., Wang, C.L., 2014. Strategy of metabolic phenotype
- Ye, Y.F., An, Y.P., Li, R.H., Mu, C.K., Wang, C.L., 2014. Strategy of metabolic phenotype modulation in *Portunus trituberculatus* exposed to low salinity. J. Agric. Food Chem. 62, 3496–3503.
- Zhao, Z.Y., Yin, Z.X., Weng, S.P., Guan, H.J., Li, S.D., Xing, K., Chan, S.M., He, J.G., 2007. Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (*Litopenaeus vannamei*) by suppression subtractive hybridisation. Fish. Shellfish Immunol. 22, 520–534.