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A B S T R A C T

A basic albeit elusive goal of ocean science is to predict the structure of biological communities from the
multitude of environmental conditions they experience. Estimates of the realized niche-based traits (realized
traits) of phytoplankton species or functional groups in temperate seas have shown that response traits can help
reveal the mechanisms responsible for structuring phytoplankton communities, but such approaches have not
been tested in tropical and subtropical marginal seas. Here, we used decadal-scale studies of pigment-based
phytoplankton groups and environmental conditions in the South China Sea to test whether realized traits could
explain the biogeographic patterns of phytoplankton variability. We estimated the mean and breadth of the
phytoplankton realized niches based on responses of the group-specific phytoplankton composition to key en-
vironmental factors, and we showed that variations of major phytoplankton groups in this system can be ex-
plained by different adaptive trade-offs to constraints imposed by temperature, irradiance, and nutrient con-
centrations. Differences in the patterns of trade-offs clearly separated the dominant groups from one another and
generated four sets of realized traits that mirrored the observed biogeographic distribution patterns. The phy-
toplankton realized niches and their associated traits that we characterized in the present study could help to
predict responses of phytoplankton to changes in environmental conditions in the South China Sea and could be
incorporated into global biogeochemical models to anticipate shifts in community structure under future climate
scenarios.

1. Introduction

Marine phytoplankton play key roles in the global carbon cycle,
accounting for about one-half of net global primary productivity
(Falkowski et al., 1998; Field et al., 1998). Phytoplankton species can
be grouped into functional groups that reflect diverse, multi-
dimensional niches characterized by a variety of environmental factors,
including nitrogen, phosphorus, silicate, iron, light, temperature, and
grazers (Edwards et al., 2013). Changes in the relative abundance of
functional groups and their realized niches affect biogeochemical cycles
such as the microbial loop, biological pump, and major elemental cycles
(Litchman et al., 2015). Thus, understanding the ecological niches of
different functional groups and their interaction is central to predicting
how diverse global environmental changes will affect phytoplankton
communities and ultimately alter biogeochemical cycles.

Phytoplankton niches are usually defined based on both laboratory
experiments and field observations. Laboratory experiments use phy-
siological parameters, such as sensitivity to changes in nutrient con-
centrations, light, temperature, and salinity, to mechanistically con-
struct a niche model that is then related to current environmental
conditions to derive a maximal distribution range (Litchman and
Klausmeier, 2008; Litchman et al., 2012; Litchman et al., 2015). This
approach can provide mechanistic explanations for the predicted pat-
terns. One drawback is that physiological parameters measured for a
limited set of species may not be representative of the realized niches
occupied by phytoplankton communities in the real ocean (Irwin et al.,
2012). Niches estimated from the field have been based on observa-
tional data of phytoplankton distributions and associated environ-
mental data using statistical models (Wiens et al., 2009; Litchman et al.,
2012). Such statistical models represent realized niches of species or
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specific groups. Use of these models is a powerful approach to predict
biogeographic distributions of phytoplankton under changing en-
vironmental conditions (Irwin et al., 2012), but with the caveat that
potential controlling factors in future climate scenarios will be similar
to the controlling factors under present conditions (Flombaum et al.,
2013). Because the realized niches result from the net outcome of
bottom-up and top-down processes, the absence of mechanistic ex-
planations for the observed patterns is an important caveat (Litchman
et al., 2012). However, it has been argued that a focus on traits on the
basis of niches has the potential to improve understanding of the me-
chanistic linkages between environmental drivers and phytoplankton
communities (Litchman et al., 2012; Edwards et al., 2013). While the
trait-based approach is derived from mechanistic niche models, this
approach can also improve mechanistic explanations for statistical
niche models by identifying traits of realized niches of phytoplankton
communities based on a large number of observational field data.
Evidence has been provided by a recent series of studies in the tem-
perate North Atlantic (Irwin et al., 2012, 2015) and the global open
ocean (Brun et al., 2015). Traits estimated from realized niches of
phytoplankton species or functional groups have been called realized
traits to stress the departure from the traditional focus on functional
traits that determine the fundamental niche of a species or group
(Mutshinda et al., 2017).

Methods to identify phytoplankton community composition include
microscopy (Utermöhl, 1958), chemical biomarkers (Mackey et al.,
1996), flow cytometry (FCM) (Sieracki et al., 1998) and phylogenetic
methods (Saldarriaga et al., 2001). Among these, estimating phyto-
plankton groups using CHEMTAX based on specific marker pigments is
a very useful tool at present (Ston and Kosakowska, 2000). CHEMTAX is
remarkable for its ability to exhibit the whole phytoplankton commu-
nity from picoplankton to large colonies at one time, although the in-
formation is limited to taxonomic levels higher than classes (Wang
et al., 2015).

The South China Sea (SCS) is the largest tropical-subtropical shelf
marginal sea in the world. Temporal and spatial variations of phyto-
plankton community characteristics in this system have been studied
for decades. Ning et al. (2004) have reported seasonal and spatial
variations of the phytoplankton community based on microscopic
analyses of water samples collected during cruises in summer and
winter. Liu et al. (2007) have investigated seasonal variations of pico-
phytoplankton based on monthly FCM data collected over a period of
two years from the Southeast Asia Time-series Station (18.3°N,
115.5°E). Based on analyses of photosynthetic pigments, Zhai et al.
(2011) have reported phytoplankton pigment patterns and community
characteristics near the Pearl River in winter; Huang et al. (2010) and
Wang et al. (2016) have investigated responses of the phytoplankton
community to mesoscale eddies; and Ho et al. (2015) have reported
seasonal and spatial patterns of phytoplankton pigments and commu-
nity compositions and discussed the potentially controlling environ-
mental factors based on two summer and two winter cruises in four
sectors of the northern SCS. These studies, however, have been limited
with respect to the number of phytoplankton species, sizes, or groups
that were studied; the temporal and spatial scales; and the number of
environmental factors that were taken into consideration. As yet there
have been no high-resolution studies of the temporal and spatial var-
iations of the entire phytoplankton community in the SCS. Key factors
controlling the variations and the associated mechanisms are not fully
understood. There has been no quantitative definition of the realized
niches of major phytoplankton functional groups in terms of environ-
mental factors in this system.

Here, we compiled a decadal-scale pigment dataset and associated
environmental information covering all four seasons and the majority
of the entire SCS. Using these datasets, we estimated the major phy-
toplankton groups in the SCS using CHEMTAX and identified their
general distribution patterns and ecological realized niches, and we
tested whether realized traits based on the realized niches estimated

from the field data could explain how the phytoplankton community of
this system varied in response to seasonal and spatial fluctuations of
multiple environmental factors.

2. Materials and methods

2.1. Site description

Our study area was the region of the SCS bounded by latitudes of
10°N and 24°N and longitudes of 109°E and 121°E. This area covers the
majority of the SCS, including the coastal zone, the continental shelf
and slope, and the vast deep-water basin, the greatest depth of which is
about 4.5 km (Chu and Fan, 2001). The SCS is very much affected by
the alternating monsoons (East Asian monsoon system); the strong
northeast monsoon prevails from November to April, and the southwest
monsoon from June to September; May and October are inter-monsoon
months (Wong et al., 2002; Tseng et al., 2005). This climate system is
the main driver of the seasonal changes of chlorophyll a and primary
productivity (Liu et al., 2002; Xie et al., 2015). Sea surface temperature
(SST) is relatively low in the subtropical northern SCS and is high
throughout the year in the tropical southern SCS; the annual average
SST is about 25–26 °C in the northeast and up to 29 °C in the southern
Kalimantan area (Chu et al., 1997). The mixed layer depth is only
∼25m in summer, but in winter it can be as deep as 100m in response
to the northeast monsoon. The annual average nutricline depth is
∼60m. The euphotic zone depth in the basin is relatively stable
throughout the year, generally in the range of 80–90m. This depth
exceeds the nutricline depth, the result being a distinct deep chlor-
ophyll maximum layer (DCML) (Tseng et al., 2005).

The Pearl River and Mekong River are the two main continental
rivers that discharge into the SCS. Their flow rates are 316 km3 yr–1 and
470 km3 yr–1, respectively (Wong et al., 2007). The large amount of
anthropogenic nitrogen discharged into the northern SCS by the Pearl
River leads to a high concentration of chlorophyll a in the northern
nearshore region (Gan et al., 2010). However, the surface circulation in
the northern SCS is overall anticyclonic in summer as a result of the
Western Boundary Current (WBC), which dominates in the basin of the
SCS under the influence of southwestern monsoon. Besides, the Pearl
River Plume spreads northeasterly, driven by the monsoon. These
characteristics of ocean circulation in the SCS prevent transfer of al-
lochthonous nutrients to the central basin. As a result, the central basin
still exhibits characteristics typical of oligotrophy (Chu and Fan, 2001;
Su, 2004).

2.2. Data acquisition

We conducted 20 cruises and obtained 5338 pigment samples in the
SCS from Feb. 2004 to July 2015 (Table 1). The cruises took place in all
four seasons and during most months of the year. Stations were located
irregularly in space and covered most of the SCS, except in the winter.
There were no stations in the southeast sector in the winter because of
the very poor weather conditions (Fig. 1).

Temperature (T, °C), salinity (S), and pressure were determined at
every station from casts of a Seabird conductivity-temperature-depth
(CTD) probe fitted with a Sea Tech fluorometer. Seawater samples were
taken from the top 200m using Niskin bottles attached on the CTD
rosette system. Nutrient concentrations, including nitrate (N, μmol L–1),
phosphate (P, μmol L–1) and silicate (Si, μmol L–1) were determined by
professional laboratories (Han et al., 2012; Liu et al., 2016). Con-
centrations below the detection limits were equated to the detection
limits for the parametric statistical analyses.

Samples for phytoplankton pigment analyses were collected at every
station on all cruises. Pigment concentrations were measured by high
performance liquid chromatography (HPLC) following the modified
method of Furuya et al. (2003) and have been reported in detail pre-
viously (Huang et al., 2010; Wang et al., 2015, 2016). The pigments
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identified in the samples are listed in Table 2. The relative contributions
of taxa to the total chlorophyll a (TChl a, the sum of Chl a and DV-Chl a,
Table 2) were calculated using the CHEMTAX program (Mackey et al.,
1996). Thirteen diagnostic pigments were used to associate fractions of
the TChl a pool with nine phytoplankton groups: dinoflagellates (Dino),
diatoms (Diat), haptophytes (Type 8) (Hapt_8), haptophytes (Type 6)
(Hapt_6), chlorophytes (Chlo), cryptophytes (Cryp), Prochlorococcus
(Proc), Synechococcus (Syne), and prasinophytes (Pras) (Table 2). The
initial input ratios of the diagnostic pigments to Chl a were the same as
the ratios used in previous studies in the SCS (Wang et al., 2015, 2016).
Samples were grouped based on bottom depth and sampling depth
(Wang et al., 2015). Successive runs were done to gain convergence
between input and output ratios according to the CHEMTAX protocols
described by Latasa (2007). To confirm the pigment-based phyto-
plankton compositional assessments, we compared the concentrations
of groups estimated from CHEMTAX to concentrations of marker pig-
ments and to published results from FCM analyses (Chen et al., 2011,
2014). The correlations were high between concentrations of phyto-
plankton groups and their marker pigments (Fig. 2), and the compar-
isons between the populations determined via HPLC-CHEMTAX and
FCM were especially good (Fig. 3), similar to results reported in the East
China Sea and Yellow Sea (Liu et al., 2012, 2016; Xiao et al., 2018).
There may be underestimation of picoeukaryotes in the upper layers
(Fig. 3) because of lower Chl a cell quotas in the upper layers than in
deeper layers as a result of differences in temperature, nutrient con-
centrations, irradiance and ecotype composition (Chen et al., 2011).

Mixed layer depth (Zm, m) was determined as the shallowest depth
where the density exceeded the density at 5m by 0.125 kgm–3

(Thomson and Fine, 2003). Monthly average wind speeds (Wind, m s–1)
during the cruises were extracted from the WindSat database (available
at http://www.remss.com/missions/windsat). The monthly average
daily irradiance at depth z (Ez, mol quanta m–2 d–1) was calculated with
Eqs. (1) and (2):

=k Zln(0.01)/d e (1)

= × − ×E E k zexp( )z d0 (2)

where kd is the light attenuation coefficient; Ze is the depth of the eu-
photic zone, calculated according to Lee et al. (2007); E0 is the monthly
surface photosynthetically active radiation (400–700 nm) obtained
from the standard MODIS-Aqua Level-3 products at 9 km-pixel

resolution (http://oceandata.sci.gsfc.nasa.gov/MODISA).

2.3. Data analysis

2.3.1. General description
We explored spatial and temporal variations of environmental fac-

tors by roughly comparing their characteristics between the surface
waters (upper 5m) of four regions of the SCS, coast (≤50m), shelf
(50–200m), slope (200–1000m) and basin (> 1000m), during four
meteorological seasons, spring (Mar. to May), summer (Jun. to Aug.),
autumn (Sep. to Nov.), and winter (Dec. to Feb.). Horizontal distribu-
tions of phytoplankton TChl a biomass and the nine phytoplankton
groups were determined seasonally in the upper 5m and integrated
through the euphotic zone (the upper 100m) by averaging all data over
1°× 1° grid boxes. Vertical profiles of phytoplankton TChl a biomass
and the concentrations of the nine phytoplankton groups in each season
were smoothed using a loess curve. An artificial neural network (ANN,
see below) was employed to identify the importance of each environ-
mental factor in predicting the concentration of each phytoplankton
group. Canonical correspondence analysis (CCA) was performed to
identify the importance of each environmental factor in explaining
variations of the phytoplankton community structure. We characterized
the realized niches of the phytoplankton groups based on the responses
of the phytoplankton groups to key environmental variables using
statistical models that combined the maximum entropy (MaxEnt)
method (Phillips et al., 2004; Elith et al., 2011) and generalized ad-
ditive models (GAMs) (Wood, 2006; Zuur et al., 2009). We defined two
realized traits for each response function, the mean univariate realized
niche (or simply mean niche, μ) and the breadth of the niche (σ).
Principal component analysis (PCA) and clustering analysis were used
to identify possible clusters based on realized traits of the groups. All
analyses except the MaxEnt were done using R 3.3.3 (R Development
Core Team, 2017). The MaxEnt was run via MaxEnt software 3.3.3 k
(https://biodiversityinformatics.amnh.org/open_source/maxent/).

2.3.2. Artificial neural network
ANN is a powerful nonlinear mapping method that is particularly

useful to reveal previously unknown relationships among variables (Lek
and Guégan, 1999). An ANN was implemented using the R package
‘neuralnet’ (Guenther and Fritsch, 2016). Feedforward neural networks
with one hidden layer of three neurons were constructed to fit the train

Table 1
Summary of sample collections during 20 cruises in the South China Sea from 2004 to 2015. The cruises were funded by MEL, State Key Laboratory of Marine Environmental Science;
SCOPE, the South China Sea Coastal Oceanographic Process Experiment Project; CHOICE-C, China Ocean Carbon Program; NROC, NSFC Open Research Cruise; NROC-EOG, NROC
Excellent of Group; and SOA, State Oceanic Administration Research Program. A small part of data for cruises MEL-1 and NORC-EOG3 have been published in Huang et al. (2010) and
Wang et al. (2016), respectively, for analyzing responses of phytoplankton to mesoscale eddies.

Year Cruise code Date Region covered Stations Samples

2004 MEL-1 11–27 Feb. 18.5–23.0 °N, 112.5–117.0 °E 12 75
2004 MEL-2 07–21 July 18.0–22.5 °N, 111.0–117.0 °E 30 85
2006 NORC-EOG1 27 Nov.–20 Dec. 10.0–22.0 °N, 110.2–120.5 °E 29 172
2007 NORC-EOG2 28 July–06 Aug. 17.0–19.0 °N, 111.5–120.0 °E 24 100
2007 NORC-EOG3 16 Aug.–12 Sep. 11.0–16.0 °N, 109.5–114.0 °E 78 477
2008 SCOPE 30 June–14 July 20.0–23.5 °N, 115.2–118.6 °E 55 358
2008/2009 CHOICE-C0 29 Dec.–09 Jan. 18.0–23.2 °N, 112.2–118.2 °E 35 131
2009 CHOICE-C1 18 July–16 Aug. 18.0–23.2 °N, 109.0–120.0 °E 75 430
2010 CHOICE-C2 06 Jan.–30 Jan. 18.5–23.5 °N, 111.0–120.0 °E 62 340
2010 NORC2010-03 26 Apr.–24 May 9.15–22.3 °N, 110.0–120.0 °E 49 279
2010 CHOICE-C3 26 Oct.–24 Nov. 18.0–23.5 °N, 111.8–117.6 °E 40 195
2011 CHOICE-C4 30 Apr.–28 May 18.0–24.6 °N, 110.5–112.3 °E 83 488
2011 NORC2011-02 24 Aug.–24 Sep. 11.0–23.8 °N, 109.8–118.5 °E 92 507
2012 NORC2012-05 11 Apr.–24 Apr. 13.6–20.7 °N, 113.0–118.8 °E 35 232
2012 CHOICE-C5 30 July–16 Aug. 18.2–23.0 °N, 110.2–117.8 °E 63 346
2013 NORC2013-06 26 Sep.–11 Sep. 14.8–21.5 °N, 110.0–120.8 °E 63 275
2014 NORC2014-06 05 Apr.–22 Apr. 17.5–22.8 °N, 110.7–122.5 °E 40 247
2014 NORC2014-05 26 May–14 July 14.0–23.0 °N, 110.5–123.0 °E 56 332
2014 SOA 20 Aug.–05 Sep. 18.0–22.0 °N, 114.0–116.0 °E 11 121
2015 NORC2015-06 20 June–02 July 18.0–22.5 °N, 111.0–116.0 °E 29 148
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data for each combination of a group and an environmental variable.
The environmental factors included temperature, salinity, irradiance,
nitrate, phosphate, wind speed, and mixed layer depth. Silicate was not
incorporated into the ANNs and later analyses because information on
silicate concentrations was lacking on eight cruises. Furthermore, the
silicate concentration of our samples was rarely below the detection
limit (0.6 μmol L–1), and 95% of which were higher than 1 μmol L–1.
Harrison et al. (1976) have reported that a diatom model species,
Skeletonema costatum, can grow at up to 1.3 d–1 at silicate concentra-
tions less than 1 μmol L–1, the indication being that silicate is usually
not limiting in the SCS. The algorithm of resilient backpropagation with
weight backtracking was used to find the local error minimum
(Buscema, 1998; Guenther and Fritsch, 2016). The sum of squared er-
rors was used as the error function, and the logistic function was used as
the activation function. All the input and output variables were nor-
malized between 0 and 1 (i.e., x′=[x – xmin]/[xmax – xmin]) before
analysis. To compare the prediction accuracy of each model, we ran-
domly split the data into two sets; 75% of the data were selected as the
training data, and the rest were used as the test data. The root mean
square error (RMSE) and coefficient of determination (R2) were calcu-
lated for the pairwise real observations and model predictions of the
test dataset. The splitting process was repeated ten times using boot-
strapping to obtain average values.

2.3.3. Canonical correspondence analysis
CCA was conducted with the R package ‘vegan’ (Borcard et al.,

2011). The environmental factor matrix included temperature, salinity,
irradiance, nitrate, phosphate, wind speed, and mixed layer depth. The
CCA analyses were conducted based on the whole dataset, on seasonal
datasets, and on regional datasets. Each CCA was repeated 100 times by
bootstrap selection of one-half of the observations each time, and the
importance of each predictor derived from each run was averaged. The
metric of the relative importance of each factor was the R2 obtained
from the permutation test (Borcard et al., 2011). We estimated the most
important predictors by averaging the importance of each predictor
based on the nine CCAs that used the whole, seasonal, or regional da-
tasets. As was the case with the ANNs, all the response and explanatory
variables were normalized to non-dimensional values between 0 and 1
before analysis.

2.3.4. Phytoplankton realized niches
Phytoplankton groups were sometimes absent or below the limit of

detection in some samples. To overcome our inability to detect true
absences, we modeled phytoplankton realized niches using data only
when the relevant concentrations were above the limit of detection
(i.e., only group present data). We built functional relationships be-
tween environmental factors and concentrations of phytoplankton
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Fig. 1. Maps of sampling stations from 20 cruises in the South China Sea from 2004 to 2015.
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groups by modeling the probability of observing a particular phyto-
plankton group estimated by the MaxEnt method (Phillips et al., 2004;
Elith et al., 2011) multiplied by the absolute concentration of that
group estimated by the GAMs (Wood, 2006; Zuur et al., 2009). The

MaxEnt method is a program that uses presence-only species records
together with coincident environmental data to model species dis-
tributions, with the full distribution of environmental data as the
background. One of the advantages of this method over other

Table 2
The list of abbreviation of pigments. The thirteen diagnostic pigments are marked in bold and their affiliation to phytoplankton groups are marked with dots (adapted and modified from
Wang et al., 2015).

Pigments Abbr. Dinoflagellates
Dino

Diatoms
Diat

Haptophytes
(Type 8)
Hapt_8

Haptophytes
(Type 6)
Hapt_6

Chlorophytes
Chlo

Cryptophytes
Cryp

Prochlorococcus
Proc

Synechococcus
Syne

Prasinophytes
Pras

Monovinyl
chlorophyll a

Chl a ● ● ● ● ● ● ● ●

Divinyl
chlorophyll a

DV-Chl a ●

Total chlorophyll a TChl a
Monovinyl

chlorophyll b
Chl b ● ●

Chlorophyll c1+c2 Chl c1+c2
Chlorophyll c3 Chl c3
Alloxanthin Allo ●
19′-Butanoyloxy

-fucoxanthin
But ●

Diadinoxanthin Diadino
Diatoxanthin Diato
Fucoxanthin Fuco ● ●
19′-Hexanoyloxy

-fucoxanthin
Hex ● ●

Lutein Lut ● ●
Neoxanthin Neo ● ●
Peridinin Peri ●
Prasinoxanthin Prasino ●
Violaxanthin Viol ● ●
Zeaxanthin Zea ● ● ●

Fig. 2. Correlations between concentrations of phytoplankton groups estimated from CHEMTAX and concentrations of marker pigments. The values in parentheses are the coefficients of
determination (R2). All the coefficients are statistically significant (p < 0.01).
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traditional zero-inflated models is its ability to avoid the problematic
issue of detectability by working with presence-only data. It has been
used to identify realized niches in terms of the probability of presence
of phytoplankton species in the North Atlantic (Irwin et al., 2012;
Barton et al., 2016) and at some time-series stations (Irwin et al., 2015;
Mutshinda et al., 2016). The GAMs is a popular regression technique
that allows for rather flexible specification of the explanatory variables
and enjoys the advantage of being nonparametric. In this study, we
focused on phytoplankton taxonomic groups that were estimated from
marker pigments instead of individual species. Because the niche of a
group along an environmental gradient is usually much broader than

the niche of one species, it is more reasonable to use GAMs to model the
Chl a concentrations of groups than the probability of their presence.
However, large fractions of the concentrations of some phytoplankton
groups were zero in our study, and these zeros may have biased the
response function (Flombaum et al., 2013). Combining GAMs and
MaxEnt together provided an efficient way to eliminate the effect of
zeros by separately modeling the probability of a group’s presence and
its concentration when present. A similar method has been used to
identify the realized niches of Prochlorococcus and Synechococcus on a
global scale (Flombaum et al., 2013).

Because there are correlations between the predictors, the response
functions from a full multivariate model can be difficult to interpret
(Irwin et al., 2012). We therefore used just one environmental predictor
at a time for the purpose of characterizing the group response to each
environmental condition individually. The model formations were es-
tablished as follows:

= = ×f x P y x C x( ) ( 1| ) ( ) (3)

= = =P y x P y g x g x( 1| ) ( 1) ( )/ ( )1 (4)

= + +C x α s x ε( ) ( ) (5)

where f x( ) is the Chl a concentration of a phytoplankton group esti-
mated by a particular environment, x. The conditional probability of
finding the group in the environment, =P y x( 1| ), was evaluated using
Bayes theorem of the MaxEnt method. =P y( 1) is the probability that
the group would be found in a random sample. The probability dis-
tribution functions g x( ) and g x( )1 were estimated for the environmental
condition of all available observations known as background data and
for the environment of the group presence-only data, respectively. C x( )
is the concentration of the phytoplankton group estimated by GAMs.
The observations for C x( ) were the same as g x( )1 , but the absolute
concentrations were used instead of presence-only data. The term s(x)
indicates a one-dimensional nonlinear function based on cubic regres-
sion splines. The term α is a grand mean, and ε is an error term. The
GAMs were done using the R package ‘mgcv’ (Wood, 2006).

For the MaxEnt analysis, we turned off threshold features in the
response functions because they often produced unrealistic response
functions, likely because of overfitting the data (Irwin et al., 2012). We
allowed linear, quadratic, product, and hinge features, and we used the
default settings for all other tunable parameters in the MaxEnt software
(Barton et al., 2016). Seventy-five percent of the presence data were
separated for training; the rest were used for testing subsets. We per-
formed 100 bootstrap resampling runs for each group (observation-
based model and projections) and recorded the logistic probability for
each bootstrapped sample. The GAMs were conducted based on the
same bootstrapped samples.

The mean realized niche (μ) and the breadth of the niche (σ) were
defined based on the univariate response function, f(x), and were cal-
culated by

∫

∫
=μ

xf x dx
f x dx

( )
( ) (6)

∫

∫
=

−
σ

x μ f x dx
f x dx

( ) ( )
( )

2
2

(7)

The μ and σ for all environmental variables represent the environ-
mental conditions for which the estimated concentrations of a group are
high, and we interpret them as a simple description of the realized trait
of a group.

2.3.5. PCA and clustering analysis
PCA and clustering were conducted using the R package ‘vegan’

(Borcard et al., 2011). The data matrix for PCA included mean realized
niches and breadths of the niches of the nine phytoplankton groups. The
first two dominant components were used for clustering analysis. A

Fig. 3. Comparisons between the phytoplankton groups determined via HPLC-CHEMTAX
and FCM for cruises CHOICE-C1 – CHOICE-C4. Chlorophyll a concentrations of picoeu-
karyotes using CHEMTAX are the sum of haptophytes (Type 8), haptophytes (Type 6),
chlorophytes, prasinophytes and cryptophytes.
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scree plot showing changes of within-group sum of squared errors (SSE,
the sum of the squared distances among cluster members divided by the
number of objects) along the number of clusters was performed to select
an appropriate number of clusters. Ward's minimum variance clustering
was conducted based on the Euclidean distances among the standar-
dized values of the first two PCA components.

3. Results

3.1. Variability of physical and chemical parameters

Seasonal variations of SST, salinity, irradiance, wind speed, mixed
layer depth, and concentrations of nitrate and phosphate by regions in
the surface waters of the SCS during our observations are summarized
in Fig. 4. The seasonal gradient of SST was in the order summer >
spring > autumn > winter, with mean values of 28.50 ± 1.52 °C,
27.14 ± 1.90 °C, 26.89 ± 2.55 °C, and 22.19 ± 3.34 °C, respectively.
Spatially, SST increased from inshore to offshore regions, and the
magnitude of the increasing trend increased from spring to winter. The
pattern of the seasonal variation of irradiance was similar to that of
SST, except that the highest mean irradiance was in spring
(36.51 ± 12.44mol quanta m–2 d–1), which was 1.33, 1.82, and 2.16
times the summer, autumn, and winter values, respectively. The high
mean irradiance in spring was mostly contributed by the basin area of
the SCS (41.42 ± 12.93mol quanta m–2 d–1). Seasonal variations of
wind speed and mixed layer depth were apparent and similar, but their
patterns were opposite to that of irradiance, with much higher wind
speeds and deeper mixed layer depths in autumn and winter than in
spring and summer. This pattern reflects the impacts of the strong
northeast monsoon in cold seasons and the weak southwest monsoon in
warm seasons. The mixed layer depths also differed between regions; it
was much shallower in the coastal zone than in deeper waters.

The seasonal variation of salinity was more obvious in the coast and
shelf than in the offshore regions. Less saline water from the Pearl River
was apparent in the coastal zone, especially during the summer when
the low-salinity water extended to the shelf. Consistent with the surface
salinity gradient, concentrations of nitrate and phosphate were rela-
tively high in the coastal zone and low in offshore waters. This onshore-
offshore gradient suggests that nutrient-rich water from land runoff is

an important source of nutrients in the SCS. Corresponding to the high
wind speed and deep mixing during the cold seasons, concentrations of
both nitrate and phosphate were higher in autumn and winter than in
spring and summer. This seasonal pattern indicates that upwelling was
another important source of nutrients to the euphotic zone. Silicate
displayed a pattern similar to that of nitrate and phosphate, except that
the concentrations of silicate were above the limit of detection, even in
the offshore waters (data not shown); the surface mean silicate con-
centration was as high as 2.55 μmol L–1.

3.2. Variability of biomass and composition of phytoplankton in surface
water

Fig. 5 summarizes the spatial variations of TChl a and phyto-
plankton groups by seasons in the surface waters of the SCS. The
average TChl a concentration was highest in winter
(0.71 ± 0.76mgm–3), followed by summer (0.55 ± 0.75mgm–3),
autumn (0.40 ± 0.47mgm–3), and spring (0.20 ± 0.24mgm–3). TChl
a concentrations decreased in an onshore–offshore direction; this pat-
tern was more obvious in summer and less apparent in winter. The high
average TChl a concentrations in summer were contributed mainly by
the northern inshore regions, whereas in winter, both inshore and off-
shore regions were characterized by high TChl a concentrations.

Based on the CHEMTAX analysis, diatoms dominated in the
northern high-TChl a waters, whereas Prochlorococcus and
Synechococcus dominated in offshore waters. The coastal dominance of
diatoms was the weakest in spring, when the phytoplankton community
was very diverse, with high fractions of Synechococcus, haptophytes
(Type 8), dinoflagellates, and Prochlorococcus. In autumn and winter,
the dominant groups in the offshore region changed from
Prochlorococcus and Synechococcus to haptophytes (Type 8) and prasi-
nophytes. The shelf displayed large seasonal variations in phyto-
plankton community composition. Diatoms dominated in the summer;
Prochlorococcus and Synechococcus dominated in the spring; and hap-
tophytes (Type 8) and prasinophytes dominated in the autumn and
winter (Fig. 5 and Fig. S1).

Fig. 4. Spatial and temporal variations of environmental factors in the upper 5m of the South China Sea. (a) Temperature (T); (b) Monthly irradiance at depth z (Ez); (c) Monthly wind
speed (Wind); (d) Mixed layer depth (Zm); (e) Salinity (S); (f) Nitrate (N); (g) Phosphate (P).
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3.3. Vertical distributional patterns of phytoplankton total biomass and
composition

The vertical profiles of phytoplankton biomass differed between
groups and seasons (Fig. 6 and Fig. S2). In spring, a clear subsurface
DCML existed around 75m; in summer and autumn, the DCML was
around 50m; in winter, TChl a concentrations were vertically uniform
in the mixed layer and decreased with depth below the mixed layer.
Haptophytes (Type 8) and Prochlorococcus showed clear subsurface
maximum layers throughout the year; the maximum haptophytes (Type
8) concentration was deeper than that of Prochlorococcus. From spring
to autumn, the concentrations of haptophytes (Type 8) were lower than
those of Prochlorococcus above the DCML but higher below the DCML;
in winter, the concentration of haptophytes (Type 8) was higher than
Prochlorococcus throughout the water column. Prasinophytes showed
clear subsurface maximum layers in all seasons except winter, but the
depth of the maximum layer progressively shoaled from spring to au-
tumn. Synechococcus did not show a clear subsurface maximum layer in
any season. The concentrations of Synechococcus decreased with depth
in summer and decreased with depth below 30m in other seasons.
Diatom subsurface maximum layers were not evident in any season.
The concentration of diatoms rapidly decreased with depth in all sea-
sons except spring, when it was uniform in the upper 75m. Other
groups (haptophytes (Type 6), chlorophytes, and cryptophytes) also
showed vertical variations, but their concentrations were relatively low
throughout the water column.

3.4. Variability of phytoplankton biomass and composition in the euphotic
zone

The seasonal variations of integrated TChl a were less apparent than
that of surface TChl a. In contrast to the surface TChl a, the integrated
TChl a increased in both inshore and offshore regions in the spring. The
result was an increase of overall TChl a. Almost the opposite pattern
was found in winter, and the result was a decrease of the overall TChl a.
In summer, the integrated TChl a decreased slightly in the coastal zone
but increased slightly in the offshore regions, the net result being no
apparent differences in the overall TChl a (Fig. 7). The seasonal pattern
of the average TChl a concentration decreased in the order winter
(0.52 ± 0.79mgm–3) > summer (0.42 ± 0.61mgm–3) > spring
(0.25 ± 0.32mgm–3) > autumn (0.22 ± 0.31mgm–3).

After integration, the dominant groups were the same as those in the
surface water, but their relative contributions changed by the amounts
indicated in Figs. 5, 7, S1, and S3. The most obvious change was that
the contribution of haptophytes (Type 8) and Prochlorococcus increased,
whereas the contributions of diatoms and Synechococcus decreased in
all seasons (Figs. 5, 7, and S4). The contribution of prasinophytes in-
creased in spring, summer and autumn, but decreased in winter (Figs. 5,
7, and S4).

Overall, diatoms, haptophytes (Type 8), Prochlorococcus,
Synechococcus, and prasinophytes were the most dominant groups in
the SCS. These groups contributed 93.3 ± 3.9% of the TChl a and
accounted for much of the seasonal and spatial variations of TChl a. The

Fig. 5. Seasonal distributions of phytoplankton community biomass and composition in surface water samples in the South China Sea. Pie graph diameter is proportional to the mean
TChl a, and composition reflects the contributions of different phytoplankton groups to TChl a determined from CHEMTAX assessment of diagnostic pigments. All data are averaged over
1°× 1° grid boxes. Bar plot at the bottom right of each panel is the concentration of TChl a and contributions of different phytoplankton groups averaged by coast (≤50m), shelf
(50–200m), slope (200–1000m), basin (> 1000m), and all sampling stations.

W. Xiao et al. Progress in Oceanography 162 (2018) 223–239

230



phytoplankton community displayed five major biogeographic dis-
tributional patterns in terms of their habitats. The coastal community
was characterized by a high biomass of diatoms in the northern coastal
regions throughout the year and was associated with relatively high
concentrations of dinoflagellates, prasinophytes, and Synechococcus.
The surface community was characterized by a high biomass of
Synechococcus in the upper mixed layer of the entire SCS, but the re-
lative contribution of Synechococcus decreased from spring to winter.
The offshore community was characterized by high concentrations of
Prochlorococcus in both surface and subsurface waters, especially in the
spring and summer. The subsurface community was characterized by a
high biomass of haptophytes (Type 8) and prasinophytes around the
DCML, but the depth of the peak concentration was greater for hapto-
phytes (Type 8) than for prasinophytes. The shelf community was
characterized by a diverse phytoplankton assemblage and large sea-
sonal variations.

3.5. Key environmental characteristics associated with variations of the
phytoplankton community

To identify the factors that would most facilitate prediction of the
concentrations of phytoplankton groups, we performed ANN analyses
between the abundance of each group and each environmental factor
(Fig. 8a). Temperature was the most important variable in terms of the
amount of variance explained for five of the groups, especially for
haptophytes (Type 8), Synechococcus, and Prochlorococcus. Nutrient

concentrations (nitrate and phosphate) were the second most important
factor because they were among the three most important predictors for
all the groups. Among the two metrics of nutrient abundance, phos-
phate tended to be more important than nitrate. Salinity was ranked
close in importance after nutrients, with diatoms being the most sen-
sitive group, followed by Prochlorococcus and dinoflagellates. Irradiance
was ranked close in importance after salinity and was a powerful pre-
dictor for Synechococcus and haptophytes (Type 8). Mixed layer depth
was not very important, except for diatoms. Wind was a weak predictor
for all groups (Fig. 8a).

The association between environmental factors and variations of the
phytoplankton community structure in the SCS was assessed by per-
forming a series of CCAs (Fig. 8b). The performances of temperature
and irradiance were quite similar, but their relative importance de-
pended slightly on seasons and very much on regions. Irradiance was
more important than temperature in spring and in the basin area,
whereas temperature was more important in autumn and winter and in
the coastal region. The two nutrient metrics, nitrate and phosphate, also
performed in a quite similar way. Their relative importance depended
slightly on seasons but was independent of regions. In spring and
summer, phosphate tended to be more important than nitrate, whereas
in autumn, nitrate was more important. Overall, temperature was the
most important factor, followed closely by irradiance, and then fol-
lowed by nutrients and salinity. The performances in winter were
substantially higher for temperature and irradiance than for nutrients.
Similar to the ANN results, wind speed and mixed layer depth were the

Fig. 6. Vertical distributional patterns of phytoplankton total biomass and compositions. The colored lines are smoothed using the loess method (span= 1).
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least important factors (Fig. 8b).

3.6. Phytoplankton realized niches as a function of environmental factors

By combining MaxEnt analyses of presence-only data and GAMs of
absolute concentration data, we obtained the response of each phyto-
plankton group as a function of each important environmental factor
(Fig. 9). These functions reflected the characteristics of the different
responses of the phytoplankton groups to changes of the environment
within their favorable niches. The favorable niches differed greatly
between some groups; between other groups they differed mainly in
terms of their breadths. We defined these realized traits as the mean (μ)
and breadth (σ) of the realized niche weighted by the response curve for
each environmental variable.

The mean and breadth of the niches showed approximately unim-
odal relationships for all the selected variables (Fig. 10). These unim-
odal relationships tended to separate the nine groups into three sets. For
temperature and nutrients, the niche of most groups was broad and
centered at intermediate environmental conditions. For irradiance, the
majority of the groups had mean niches at the high or low extremes.
Niches of some groups were well defined and did not overlap with the
niches of other groups. Synechococcus was distinguished from the other
groups by its narrow niche breadth: a high mean temperature niche
(27.13 °C) and low mean nutrient niches (μN = 2.07 μmol L–1, μP =
0.13 μmol L–1). The niche of the haptophytes (Type 8) differed from

other niches for all the selected variables. The breadth of its tempera-
ture niche was narrow (2.61 °C), and its mean temperature niche was
low (22.97 °C). Its other niches were broad (σS = 2.56, σEz = 18.93mol
quanta m–2 d–1, σN = 3.42 μmol L–1, and σP = 0.20 μmol L–1) with
intermediate mean values of salinity (30.20) and irradiance (23.18 mol
quanta m–2 d–1) and high mean values of nutrient concentrations (μN =
4.98 μmol L–1, μP = 0.34 μmol L–1). Prochlorococcus was separated from
the other groups by its high mean salinity niche (32.50), whereas dia-
toms were unique based on their low salinity, narrow niche (μS =
29.37, σS = 1.28).

Relationships varied between the niches of the phytoplankton
groups and pairs of environmental variables. Those relationships mir-
rored the correlations between the same pairs of variables in the en-
vironment (Fig. 11). There was a co-variation between mean niches of
the two nutrients (Fig. 11f) and a negative correlation between the
mean nutrient and temperature niches (Fig. 11b) and between the mean
nutrient and mean irradiance niches (Fig. 11c). Comparing the mean
niches two variables at a time improved the separation of some groups.
These pairwise comparisons clearly separated the nine groups into
three or four sets. Haptophytes (Type 8) and Synechococcus were se-
parated away from the other groups with respect to temperature and
irradiance (Fig. 11a). Diatoms, prasinophytes, and cryptophytes dif-
fered from other groups with respect to irradiance and nutrients
(Fig. 11c). Prochlorococcus could be clearly separated from other groups
via pairs of mean niches only if salinity was taken into consideration

Fig. 7. Seasonal distributions of phytoplankton community biomass and composition in the euphotic zone of the South China Sea. Pie graph diameter is proportional to the mean TChl a,
and composition reflects the contributions of different phytoplankton groups to TChl a determined from CHEMTAX assessment of diagnostic pigments. All data are integrated through the
upper 100m and averaged over 1° × 1° grid boxes. Bar plot at the bottom right of each panel is the concentration of TChl a and contributions of different phytoplankton groups averaged
by coast (≤50m), shelf (50–200m), slope (200–1000m), basin (> 1000m), and all sampling stations.
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Fig. 8. Importance of the environmental factors indicated
by coefficient of determination (R2). (a) Importance of
each factor for predicting the concentration of each phy-
toplankton group identified by artificial neural networks
(ANNs). (b) Importance of each factor for explaining var-
iations of the phytoplankton community structure identi-
fied by canonical correspondence analysis (CCA).

Fig. 9. Response curves of each phytoplankton group against each key environmental factor. The functions were estimated combining generalized additive models and the MaxEnt
method after removing zero values. Each response curve was averaged from 100 bootstrapped processes. The histograms at the bottom of each figure show the empirical density
distribution of the values of each covariate of all observations (background data). (a) Temperature (T); (b) Salinity (S); (c) Monthly irradiance at depth z (Ez); (d) Nitrate (N); (e)
Phosphate (P).
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(Fig. 11d, e). Dinoflagellates deviated from the other groups with re-
spect to nitrate and phosphate; the nitrate: phosphate ratio was higher
for dinoflagellates than for the other groups (Fig. 11f).

Combining the means and breadths of the niches in terms of all the
selected variables enabled a comparison between the phytoplankton
groups via PCA and clustering analysis (Fig. 12). The first two principle
components represented the majority (77%) of the information of the
realized traits. Although some groups were still very close (diatoms-
dinoflagellates and prasinophytes-cryptophytes), five of the dominant
groups were separated from each other, and the observed distributional
patterns emerged from the PCA analysis. The coastal pattern, domi-
nated by diatoms and accompanied by dinoflagellates, prasinophytes,

and cryptophytes, was mainly characterized by a low mean salinity
niche, a narrow irradiance niche, and broad temperature and nitrate
niches. The opposite characteristics were associated with the offshore
pattern that was dominated by Prochlorococcus. The surface pattern of
Synechococcus was ordinated at high mean temperature and irradiance
niches and at low mean nitrate and phosphate niches. In contrast, the
set of realized traits of the subsurface pattern, dominated by hapto-
phytes (Type 8) and prasinophytes, were generally high mean nitrate
and phosphate niches but low mean temperature and irradiance niches.
Some groups, such as the prasinophytes and Prochlorococcus, over-
lapped across different patterns, but their realized traits were roughly
discernible via PCA (Fig. 12a). Based on the two dominant components,

Fig. 10. Mean and breadth of the univariate realized niches for the environmental factors for the nine phytoplankton groups. Colored lines indicate the 95% confidence interval on each
parameter from 100 bootstrapped resampling. (a) Temperature (T); (b) Salinity (S); (c) Monthly irradiance at depth z (Ez); (d) Nitrate (N); (e) Phosphate (P).

Fig. 11. Mean niches of pairs of environmental variables for each group. Colored lines indicate the 95% confidence interval on each parameter. (a) Temperature and irradiance; (b)
Temperature and nitrate; (c) Irradiance and nitrate; (d) Temperature and salinity; (e) Salinity and nitrate; (f) Nitrate and phosphate.
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a scree plot showed that there is an “elbow” at the four-cluster solution,
the suggestion being that clusters> 4 did not have a substantial impact
on the total SSE (Fig. 12b). The clustered dendrogram displayed two
major branches; one branch linked to Prochlorococcus, Synechococcus
and haptophytes (Type 6), and another branch linked to the other
groups. A four-cluster solution separated Prochlorococcus from Sy-
nechococcus and haptophytes (Type 6), and separated diatoms and di-
noflagellates from prasinophytes, cryptophytes, chlorophytes, and
haptophytes (Type 8) (Fig. 12c).

4. Discussion

Our analyses were based on a large pigment dataset that differed
from previous studies in that the samples came from a broad biogeo-
chemical domain and wide range of environmental characteristics. The
study included numerous sampling sites from the coastal zone to the
deep basin. Such a large dataset provided an opportunity for a thorough
analysis of phytoplankton composition via CHEMTAX by organizing the
dataset into separate biogeochemical domains for different regions and
different optical depths, as suggested previously (Ho et al., 2015; Wang
et al., 2015; Wang et al., 2016).

The CHEMTAX analysis revealed that diatoms, haptophytes (Type
8), Prochlorococcus, Synechococcus, and prasinophytes contributed a
major proportion (93.3 ± 3.9%) of the TChl a in the SCS, a conclusion
consistent with the high concentrations of their major marker pigments,
Fuco, But, DV-Chl a, Zea, and Chl b, respectively (Fig. 2). We observed
four distributional patterns dominated by these groups. The patterns
were not in all cases the same as those reported in previous studies. The
coastal pattern of diatoms, the surface pattern of Synechococcus, the
offshore pattern of Prochlorococcus, and the subsurface pattern of pra-
sinophytes were basically consistent with previous reports in the SCS
(Ning et al., 2004; Liu et al., 2007; Zhai et al., 2011; Chen et al., 2011;
Wu et al., 2014; Ho et al., 2015). However, in addition to a high con-
tribution of Prochlorococcus, we found a high biomass of haptophytes
(Type 8) in the DCML. The dominance of pico-sized phytoplankton
(Prochlorococcus) in the DCML of the SCS has been emphasized by
several studies based on either microscopic (Ning et al., 2004) or FCM
analyses (Liu et al., 2007; Chen et al., 2011), but a dominance of
haptophytes (Type 8) in the DCML has not been reported in previous
work. This discrepancy may reflect differences in the measurement
methods. The most common species of haptophytes (Type 8) include
Phaeocystis spp., Dicrateria spp., and Imantonia spp. (Zapata et al.,

2004), the majority of which are nano-sized phytoplankton (Rousseau
et al., 1994) and could not be easily identified by either microscopic or
FCM methods. The HPLC-CHEMTAX approach is particularly well
suited for discriminating groups of small-sized and intermediate-sized
phytoplankton, many of which are chrysophytes, chlorophytes, prasi-
nophytes, and haptophytes (Goela et al., 2014). However, a recent
study in the northern SCS that was also based on the HPLC-CHEMTAX
approach did not report a substantial fraction of haptophytes (Type 8)
but instead a much higher contribution of haptophytes (Type 6)
(prymnesiophytes or coccolithophores) (Ho et al., 2015). We note that
the ratio of marker pigments of haptophytes, the But-to-Hex ratio (0.5),
in their samples is very similar to ours (0.6). Because But is derived
mainly from haptophytes (Type 8) with only trace occurrences in
haptophytes (Type 6) (Zapata et al., 2004), it seems likely that the But-
to-Hex ratio of 0.5 reflects the presence of haptophytes (Type 8) rather
than haptophytes (Type 6). Their overestimation of haptophytes (Type
6) and underestimation of haptophytes (Type 8) might be a con-
sequence of inappropriate data clustering during the process of running
CHEMTAX.

Our large dataset provided an opportunity to determine the influ-
ence of each environmental variable on the composition of phyto-
plankton communities in the SCS. Using ANN and CCA analyses, we
found that changes of temperature, irradiance, nutrient concentrations,
and salinity were mainly associated with variations of both the con-
centrations of individual phytoplankton groups and the phytoplankton
community structure. Mixed layer depth and wind speed were the less
important factors (Fig. 8). Analysis using similar methodologies, but
focusing on a long-term phytoplankton species database has indicated
that variations of the composition of the phytoplankton community in
the North Atlantic are associated mainly with changes of mixed layer
depth and wind speed (Hinder et al., 2012; Irwin et al., 2012). One
might expect that these two factors would have a major influence on
phytoplankton dynamics in the SCS. A possible reason for the lack of
evidence to support this expectation may be that wind speed and mixed
layer depth are much less variable in the SCS than in the North Atlantic.
For example, the range of monthly wind speed was only a factor of 3 in
our study, and the mean mixed layer depth was only 26 ± 19m. In the
North Atlantic, the monthly wind speed ranges from 1 to 20m s–1

(Böning et al., 1991) and the mixed layer depth typically extends to
several hundred meters during the winter (Böning et al., 1991;
Alexander et al., 2000). In the SCS, the effect of mixed layer depth and
monthly wind speed may therefore be small compared to other factors

Fig. 12. Ordination and clustering analysis for mean
and breadth of phytoplankton. (a) Principle component
analysis for mean and breadth of phytoplankton niches;
(b) Scree plot for determining number of clusters; (c)
Cluster analysis based on the two dominant axes with a
dendrogram overlaid on the plot; colored symbols show
four clusters. T: Temperature; S: Salinity; Ez: Monthly
irradiance at depth z; N: Nitrate; P: Phosphate.
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(temperature, irradiance, nutrients, and salinity) that may directly or
indirectly affect phytoplankton community structure as a result of
species-specific physiological responses (Litchman et al., 2007;
Litchman and Klausmeier, 2008). Previous studies have indicated that
nutrient concentrations are the most important factor that regulates
phytoplankton biomass and community structure (Ho et al., 2015).
Temperature and irradiance are usually much less important as limiting
factors in subtropical and tropical ecosystem (Ho et al., 2015). Our
results seem to contradict this view and reflect more complex control-
ling mechanisms. Understanding how these factors drive the dynamics
of the phytoplankton community is a challenge under circumstances
where multiple factors may be co-varying.

To simplify this complexity, we identified the realized niches of
phytoplankton groups as a function of key factors. We then used GAMs
and MaxEnt modeling methods to define two quantitative traits of each
niche, the mean and breadth of the realized niches, for each phyto-
plankton group. We found that the mean and breadth of the realized
niches of the phytoplankton groups tended to vary systematically across
environmental gradients (Fig. 10). The occurrence of narrow niche
breadths appeared to be independent of whether the niche means were
high or low. Examples included Synechococcus (low σnutrients and low
μnutrients; low σT and high μT), diatoms (low σEz and low μEz; low σS and
low μS), and haptophytes (Type 8) (low σT and low μT). Broad niches
reflect the fact that phytoplankton are relatively insensitive to varia-
tions in that environmental variable, whereas narrow niches reflect
niche specializations (Irwin et al., 2012). We found that the ANN
analysis identified changes in a variable to be important for a group if
the corresponding niche of the group was narrow (Fig. 10a). These
results may reflect increased niche specialization under extreme en-
vironmental conditions.

Our results reflect the fact that there may be physiological trade-offs
between niches of several pairs of environmental variables across
groups. Although statistical correlations may not reflect cause-and-ef-
fect relationships, we observed that the mean niches of some pairs of
variables were highly correlated with one another (Fig. 11). Phyto-
plankton with a high temperature niche (e.g., Synechococcus) tended to
have a high irradiance niche and low nutrient niches and vice versa
(e.g., haptophytes (Type 8)). This pattern is consistent with what has
been observed in the North Atlantic with respect to the niches of var-
ious diatom and dinoflagellate species (Irwin et al., 2012). It has been
suggested that such phenomena may be a consequence of trade-offs
between the resources and energy required for metabolic kinetics
(Harrison et al., 1990). Examples include trade-offs between maximum
uptake rate and half-saturation constants for nitrate and between R∗ (a
measure of competitive ability at equilibrium) and the maximum
growth rates of phytoplankton (Litchman et al., 2007). Our results
suggest that such trade-offs may be common both within and between
functional groups, the indication being that there may be fundamental
physiological and ecological differences both within and between
functional groups.

However, some groups deviated from the pattern of trade-offs be-
tween pairs of niches (Fig. 11). The indication is that there may be
multi-dimensional trade-offs across the groups that structure commu-
nities. We found that multi-dimensional trade-offs clearly separated
several sets of traits (Fig. 12) that mirror the phytoplankton distribu-
tional patterns in the SCS. Diatoms and Prochlorococcus were the
dominant groups in the inshore and offshore regions, respectively
(Figs. 5 and 7). These two groups can be separated based on the
characteristics of their salinity niches (Figs. 10–12), perhaps a reflection
of their stenohaline nature. However, we observed that, in addition to
salinity, differences in the characteristics of their niche breadths for
temperature, irradiance, and nitrate can be used to separate these two
groups (Fig. 12). Because salinity is a crude metric of nutrient-rich
freshwater runoff, this result suggests that the observed salt limitation
between these two groups may be a consequence of trade-offs between
temperature, irradiance, and nutrient concentrations. Diatoms have a

broad thermal tolerance (Chen, 2015), and they seem to flourish when
nutrient concentrations are high. When nutrients become depleted
following stratification, the habitat suitable for diatoms is therefore
greatly reduced (Hood et al., 2006; Litchman and Klausmeier, 2008).
High nutrient concentrations can result from nutrient loading via
coastal freshwater runoff and by upwelling of deep offshore waters
from below the nutricline in the SCS. The fact that the irradiance niche
of diatoms has a high mean and narrow breadth limits their high con-
centrations to the coastal zone and upwelling regions, a reflection of a
trade-off between nutrients and irradiance. In contrast, Prochlorococcus
is a group that is typically dominant in the upper 150m of the water
column in warm, oligotrophic waters (Johnson et al., 2006). It has no
competitive advantage in nutrient-rich environments (Partensky et al.,
1999b). We found that Prochlorococcus had an irradiance niche with a
high mean and wide breadth and a temperature niche with a high mean
and narrow breadth (Figs. 10–12). These Prochlorococcus traits reflect
trade-offs: it is able to dominate in the low-nutrient conditions that
characterize warm offshore waters, but at the expense of requiring a
relatively high irradiance. Synechococcus is known to have a shallower
but broader geographical distribution than Prochlorococcus (Partensky
et al., 1999a). We found that high concentrations of Synechococcus were
more likely to be found when the temperature and irradiance were high
and the nutrient concentrations low, typical conditions in the surface
waters during warm seasons. High temperature and irradiance are often
correlated with low nutrient supply rates in the ocean (Irwin et al.,
2012; Lewandowska et al., 2014). Thus, our results imply that the nu-
trient niche of Synechococcus, which is characterized by a low mean and
narrow breadth, is a consequence of trade-offs. To fluorish under oli-
gotrophic conditions, it requires high temperature and high irradiance.
These trade-offs help to explain the broad geographic distribution of
Synechococcus worldwide, regardless of nutrient conditions, as long as
the temperature and irradiance are high (Partensky et al., 1999a). We
found that high concentrations of haptophytes (Type 8) were likely to
be associated with high phosphate concentrations, low temperature,
and low irradiance, but within a broad salinity range. This pattern is
clearly consistent with the high concentrations of haptophytes (Type 8)
at the DCML in the SCS. These results again reflect trade-offs: high
phosphate concentrations at the expense of low temperature and irra-
diance.

We also found that there was a large degree of overlap in the rea-
lized niches across different groups. We observed that prasinophytes
have a geographic distribution that overlaps with those of haptophytes
(Type 8) and diatoms, but the concentrations of prasinophytes are
lower than the concentrations of the other two groups. We found that
prasinophytes have niche traits that are intermediate between those of
haptophytes (Type 8) and diatoms (Fig. 12). The difference between
prasinophytes and haptophytes (Type 8) is that prasinophytes tend to
have a narrower irradiance niche breadth than haptophytes (Type 8).
The main difference between prasinophytes and diatoms is that prasi-
nophytes have a narrower and lower temperature niche than diatoms
(Fig. 12). The sensitivity of prasinophytes to changes in irradiance and
temperature has been reported previously on the basis of molecular
methods (Rodríguez et al., 2005; Wu et al., 2014). The specialized
prasinophyte niche with respect to irradiance and temperature results
in a loss of opportunity for normal trade-offs among resources. A similar
explanation may apply to the low biomass of cryptophytes and chlor-
ophytes, a result in accord with previous reports that these two groups
were associated with lower mixed layer depth, lower salinity, and
colder waters than diatoms (Furuya et al., 2003; Mendes et al., 2013).
Haptophytes (Type 6), which should have grown well in oligotrophic
habitats because of their high affinity for inorganic nutrients (Hood
et al., 2006), contributed small fractions in our study area. We found
that this group was clustered in the same branch as Synechococcus and
Prochlorococcus, but it did not tolerate as high a temperature and irra-
diance as Synechococcus and had a much narrower breadth of irradiance
than Prochlorococcus. This performance may have restricted normal
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trade-offs of haptophytes (Type 6). However, competition between
trade-offs may reflect more complex mechanisms. Future studies in the
SCS should look in more detail at the groups that are less abundant and
have received less attention.

Our results seem to support the viewpoint that phytoplankton cell
size is an important trait to consider in the context of the impact of
environmental changes on phytoplankton communities (Litchman and
Klausmeier, 2008; Finkel et al., 2010; Litchman et al., 2012, 2015;
Marañón, 2015; Acevedotrejos et al., 2016). We found similar realized
traits for the two micro-sized phytoplankton (diatoms and dino-
flagellates), for the two pico-sized phytoplankton (Prochlorococcus and
Synechococcus), and for most of the medium-sized phytoplankton
(haptophytes (Type 8), chlorophytes, prasinophytes and cryptophytes).
These results suggest that taking into consideration the trait of cell size
as well as niche-based response traits will facilitate prediction of the
impact of future climate changes on phytoplankton communities.

5. Conclusion

In this study, we identified five biogeographic distribution patterns
of the compositions of phytoplankton communities in the SCS. Based on
ANN and CCA analyses, we found that temperature, irradiance, nutrient
concentrations, and salinity were the factors that were most strongly
associated with changes in the concentrations of major phytoplankton
groups and the composition of the phytoplankton community. We es-
timated phytoplankton niches along gradients of these key factors via
GAMs and MaxEnt methods, and we quantitatively defined the mean
and breadth of the niches weighted by the response functions. We found
that although the traits of phytoplankton niches differed across groups,
the differences followed systematic patterns. Multi-dimensional ana-
lyses of these realized traits clearly separated the dominant groups from
one another and revealed four sets of traits that mirrored the observed
geographic distribution patterns (Fig. 13). Our results reflect the fact
that variations of the phytoplankton community in the SCS are con-
sequences of trade-offs among conditions associated with temperature,
irradiance, and nutrient concentrations. The niches and their associated
traits defined in the present study could be used to predict biogeo-
graphic distributions of phytoplankton functional groups and to an-
ticipate shifts in community structure that may result from changing
environmental conditions and climate change. An important caveat is
that we did not consider the effect of grazing and assumed the available
resources to be the net result of bottom-up and top-down control.

Grazing has been found to alter ecological niches and complicate future
predictions worldwide (Edwards and Richardson, 2004; Chen et al.,
2013). Global biogeochemical models that use these phytoplankton
niche traits should consider additional parameterizations associated
with grazing to avoid making unrealistic predictions about the impact
of future climate scenarios.
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