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Abstract

Bacterial utilization of dissolved organic matter plays an important role in

marine carbon cycling. In this study, the response of bacterioplankton to a

gradient of carbon (glucose) addition was investigated experimentally in a sub-

tropical coastal environment in the absence of top-down control by viruses

and flagellates. Bacterial abundance and production were stimulated by glucose

addition corresponding to a gradient of glucose. Differences in the extent of

stimulation suggested different bacterial life strategies under different nutrient

conditions. Bacterial community diversity as revealed by denaturing gradient

gel electrophoresis (DGGE) showed a unimodal productivity–diversity (number

of DGGE bands) relationship after 3-day incubation. DNA fingerprinting pro-

filing and cluster analysis showed clear and gradual changes in bacterial com-

munity structure along the gradient of glucose concentrations, reflecting the

competition for carbon supply among bacterial groups. Sequencing analysis of

the DGGE bands disclosed the relative abundance of seven bacterial genotypes

in the Alteromonadaceae and Roseovarius that gradually decreased with the

glucose enrichment while two Vibrio genotypes showed the reverse increasing

trend. This suggested that Vibrio was a more successful opportunist at high

carbon availability.

Introduction

Due to their high abundance, great diversity, and fast

growth rate, bacterioplankton are a key component in

marine plankton food webs and biogeochemical cycles in

the ocean (Azam et al., 1983). For example, the crucial

role of bacteria in marine carbon cycling is demonstrated

in numerous studies (see the reviews of Thingstad &

Lignell, 1997; Williams, 2000), and the topic has recently

drawn renewed interest during the consideration of the

microbial production of recalcitrant dissolved organic

matter (RDOM) as long-term carbon storage in the

global ocean (Jiao et al., 2010). Two major types of con-

trolling mechanisms of bacteria have been recognized:

bottom-up and top-down mechanisms. Bottom-up con-

trolling factors in the ocean include dissolved organic

matter (DOM) and inorganic nutrients, while protist

grazing and viral lysis are the major top-down controlling

factors. In the natural ecosystem, bacteria act as active

competitors for DOM. There is competition between

bacteria and phytoplankton and among different groups

of bacteria for the limited DOM in most areas of the glo-

bal ocean (e.g. Caron et al., 2000). Nutrient addition

experiments reveal that DOM bioreactivity limits bacterial

production and growth rate in various marine environ-

ments (e.g. Kirchman & Rich, 1997; Kirchman et al., 2000).

Furthermore, inorganic nutrients and micronutrients (e.g.

iron) affect microbial uptake of DOM (Kirchman et al.,

2000; Skoog et al., 2002). Enhanced DOM utilization was

observed after the addition of inorganic nutrient,

although the effects also depended on the type and extent

of nutrient limitation in different marine environments.

On the other hand, predation and lysis affect bacterial

abundance, production, diversity, and community
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structure. Therefore, it is expected that predators and

viruses will significantly influence the eventual bacterial

DOM uptake.

Bacterial mortality due to viral lysis is an important

controlling factor in marine environments (Fuhrman,

1999; Wommack & Colwell, 2000; Weinbauer, 2004). Sev-

eral incubation studies on bacterial communities with and

without viruses clearly show the effects of viruses on bac-

terial abundance, production, and community composi-

tion (Winter et al., 2004; �Simek et al., 2007; Zhang et al.,

2007; Sandaa et al., 2009). Furthermore, enhanced viral

production is reported in nutrient addition treatments in

micro- and mesocosm incubation experiments performed

in both marine and freshwater environments (Wilson

et al., 1998; Weinbauer et al., 2003; Motegi & Nagata,

2007). Thus, viruses should have substantial influence on

bacteria in nutrient addition experiments and should not

be overlooked. However, viruses were not considered

properly in most of the nutrient enrichment studies. For

example, the bottom-up effects of nutrients are usually

assessed by removing flagellates using filtration to obtain a

predator-free treatment (e.g. Cherrier et al., 1996; Rivkin

& Anderson, 1997; Carlson et al., 2002). Any viruses

remaining in the filtrate could still affect the bacterial

assemblage by acting as the top-down controller. There-

fore, the results obtained from these studies represent

combined the effects of bottom-up factors (e.g. nutrients)

and top-down factors (e.g. viruses). Similarly, in most

whole water bioassay experiments, virus-induced bacterial

mortality is not considered (e.g. Lebaron et al., 1999; Aga-

win et al., 2004).

Although viruses exist in all kinds of marine environ-

ments and bacterial responses to natural or artificial

nutrient changes will occur with viruses, it is essential to

distinguish the responses of the bacterioplankton itself

from those where viruses are present to have a better

understanding of the ecological role of each component

in marine food webs (e.g. Middelboe & Lyck, 2002). Such

information is particularly necessary for modeling studies

(e.g. Fuhrman, 1999). So far, little effort has been made

to alleviate or eliminate the effects of viruses during incu-

bation to obtain ‘pure’ bacterial responses to nutrient

addition (Middelboe & Lyck, 2002). In our study, we

developed a bioassay technique with predator-free and

virus-reduced bacterial communities using tangential flow

filtration (TFF) and dilution and then supplied a gradient

of additional dissolved organic carbon (DOC) to investi-

gate the respective bacterial responses in terms of abun-

dance, production, diversity, and community structure.

Our study, for the first time, provided information on

DOC utilization by bacterial communities in the absence

of significant top-down pressure.

Materials and methods

Experimental setup

About 100 L of seawater was collected at Clear Water

Bay, Hong Kong (22°17′N, 114°18′E) in an acid-rinsed

plastic tank. Samples were prefiltered with 25 lm mesh

to remove large zooplankton and particles and stored at

4 °C for < 1 h before the laboratory experiments were

started. The seawater temperature and salinity were

measured on site. The bacterial population without flagel-

lates and viruses was produced following a protocol

described by Zhang et al. (2007). Seawater was filtered

with 1.0 lm polycarbonate membrane to remove the fla-

gellate population. About 60 L of this filtrate was filtered

through a 100 KDa cutoff polysulfone cartridge (Prep--

Scale/TFF; Millipore) to obtain virus-free seawater. The

remaining bacteria-containing filtrate was mixed with the

virus-free seawater to obtain about a 10% diluted bacte-

rial population compared to that in situ. Sufficient N

(NH4NO3) and P (NaH2PO4) were added to give final

concentrations in the mixture of 25 and 5 lM, respec-

tively, so as to eliminate any limiting effects. Then, a gra-

dient of carbon concentrations (0–1000 lM) was

developed with glucose addition in two parallel experi-

ments as shown in Table 1. In the first one (Batch 1), all

glucose concentrates were added at the beginning of the

incubation, while in the second one (Batch 2), glucose

was added consecutively as 1/3 of the total on each day.

The mixtures were incubated in 2-L polycarbonate bottles

(Nalgene) at ambient seawater temperature in the dark

for 3 days. Subsamples for the determination of bacterial

and viral abundance, bacterial production, and nutrient

factors were collected every day (for Batch 2, before

nutrient addition). After 3 days of incubation, the seawa-

Table 1. Set-up of glucose concentration gradient for bacterioplankton in microcosms

Treatments C1 C2 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

N (lM) 0 25 25 25 25 25 25 25 25 25 25 25 25 25

P (lM) 0 5 5 5 5 5 5 5 5 5 5 5 5 5

C (lM) 0 0 1 2 4 6 8 10 20 40 60 80 100 1000

Two batches of incubation were developed in which the N and P addition were same. In the first batch of experiments (Batch 1), glucose was

added only at the beginning of the incubation, while in the second batch (Batch 2), glucose was added in equal amounts on Day 0, 1 and 2.
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ter was filtered using 0.22 lm polycarbonate membranes

to obtain the bacterioplankton in the microcosms for

community structure analyses.

Nutrient analysis

The nitrogen (NHþ
4 and NO�

3 þ NO�
2 ) and phosphorus

(PO3�
4 ) concentrations in the incubations were monitored

using a Skalar San++ continuous-flow analyzer (Skalar

Analytical B.V., Breda, The Netherlands) following the

standard methods: ammonia (USEPA Method 349.0);

nitrate and nitrite USEPA (Method 353.4); and ortho-

phosphate (USEPA Method 365.5). During the 3 days of

incubation, 50 mL of each of the mixtures was collected

every 24 h and stored at 4 °C in darkness until analysis.

No filtration was carried out to remove the bacteria as

the analysis procedures targeted only the soluble nutrients

in the seawater.

Bacterial and viral abundance and bacterial

production

Samples for the determination of bacterial abundance were

fixed with glutaraldehyde (0.2 lm-pore-size filtered; 2%

final concentration) and filtered through black polycarbon-

ate membrane (0.2 lm-pore-size; 25 mm diameter;

Millipore). The bacterial cells were stained with 4′,6-diami-

dino-2-phenylindole (DAPI) in the dark for 10 min before

being enumerated under an epifluorescence microscope

(Olympus BX41) with blue excitation (485 nm). Viral par-

ticles were fixed, stained with SYBR Green I, collected on

0.02 lm-pore-size aluminum oxide filters (25 mm diame-

ter; GE Healthcare), and enumerated following the

protocol of Noble & Fuhrman (1998). Bacterial production

was measured using [3H] Leucine (PerkinElmer P/N:

NET460A005MC) incorporation (Kirchman et al., 1985).

Triplicate water samples (1.5 mL) with 40 nM of [3H]

Leucine were incubated in the dark for 2 h at ambient

temperature. Trichloroacetic acid-killed samples were incu-

bated as the control.

Bacterial community structure

Bacterial genomic DNA was obtained from 0.22 lm poly-

carbonate membranes using phenol/chloroform extrac-

tion, following the protocol of Zhang et al. (2008).

Bacterial 16S rRNA genes were amplified with the univer-

sal primer set 8F+1492R and then digested with AluI and

HaeIII to carry out the terminal restriction fragment

length polymorphism (T-RFLP) analysis on a genetic ana-

lyzer (GE MegaBACE 500 DNA Analysis System) operated

in genotyping mode. Bacterial 16S rRNA gene amplicons

produced with universal primer set 341F-GC+907R were

separated on a gel with a denaturing gradient of 45–75%
[100% denaturant = 7 M urea, 40% (v/v) formamide].

The denaturing gradient gel electrophoresis (DGGE) anal-

ysis was performed on a Bio-Rad Protean II system for

18 h at a constant voltage of 125 V and a temperature of

60 °C. Nine selected DGGE bands were sequenced and

deposited in the GenBank under the following accession

numbers: JX206982–JX206990. Detailed protocols for PCR

amplification of the bacterial 16S rRNA gene and DNA

fingerprinting analysis can be found in Zhang et al. (2008,

2009).

Results

Bacterial abundance and production

Over the three incubation days, the bacterial abundance in

the two controls (C1 and C2), which had no glucose addi-

tion, increased slowly and showed the highest numbers on

Day 3 (Fig. 1). In Batch 1 (all glucose added at the onset

of incubation), bacterial abundance in most treatments
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Fig. 1. Time course changes of bacterial abundance in a gradient

glucose addition experiment during the 3-day incubation. Values are

shown as mean � SD of measurement from replicate sampling of

each microcosm. Batch 1: glucose was added only at the beginning

of the incubation; Batch 2: glucose was added in equal amounts on

Day 0, 1 and 2. C1–2, G1–12: glucose additions (for concentrations

see Table 1).
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increased rapidly at the beginning of incubation, reaching

the highest number in Day 1, followed by a general

decrease in the following 2 days. However, possibly due to

the pulse addition of glucose, the magnitude of abundance

increase in Batch 2 was smaller than in Batch 1, and most

microcosms showed sustainable or continual increase in

bacterial abundance on Day 2 and 3. In both batches,

higher glucose addition usually sustained higher numbers

of bacterial cells (Fig. 1). During the incubation, micro-

cosms with the four highest glucose additions always

showed higher bacterial abundance than lower glucose

addition microcosms (see red lines in Fig. 1). In addition,

the maximum bacterial abundance which appeared in

each microcosm gradually increased with glucose concen-

tration (for C2, G1–G8: y = 2.318x + 79.39, R2 = 0.7666)

and remarkably peaked with the 60–100 lM glucose

addition (Fig. 2). In the highest glucose treatment

(1000 lM), however, the maximum bacterial abundance

during incubation was reduced to a similar level as the

40 lM glucose treatment (Fig. 2).

Similar to the general pattern in bacterial abundance,

the addition of glucose showed stimulating effect on max-

imum bacterial production in each microcosm during

incubation (for C2, G1–G11: y = 1.632x + 401.18;

R2 = 0.568; Fig. 2). In addition, the maximum produc-

tion rate showed a temporal difference between the treat-

ments. Two controls, three low glucose additions (G1–
G4), and the highest glucose addition (G12) in Batch 1

showed the highest production rate on Day 1 while other

treatments showed a later peak on Day 2 or 3 (Fig. 3).

For Batch 2 treatments, only the highest glucose addition

significantly peaked on Day 1 while all others peaked on

Day 2 or 3.

Bacterial species richness and community

structure

Bacterial community structure revealed by DGGE showed

a gradual change along the concentration gradient of

glucose in both batches (Fig. 4). Considering the rela-

tively consistent community structures (as shown by the

consistent patterns on both DGGE gels) between the two

batches, only Batch 1 was selected for further molecular

analysis. This gradual change of bacterial communities

revealed by DGGE analysis was further verified using

another DNA fingerprinting technique, T-RFLP, with a

different PCR primer set (Supporting Information, Fig.

S3). In the DGGE analysis, the number of bands varied

between 5 and 15 (Figs 2 and 4). Samples of medium

glucose (4–20 lM) addition treatments showed a higher

number of bands than those with lower (0–2 lM) or

Glucose treatment
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Fig. 2. Variations of bacterial community parameters along a glucose

concentration gradient. The maximum bacterial abundance and

production indicate the highest bacterial biomass accumulation and

carbon assimilation rates during the 3-day incubation with different

carbon supply. Bacterial species richness is the number of DGGE

bands (see Fig. 4 for DGGE patterns). C2, G1–12: glucose additions

(for concentrations see Table 1).
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Fig. 3. Time course changes of bacterial production to gradient
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mean � SD of measurement from replicate sampling of each
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1 and 2. C1–2, G1–12: glucose additions (for concentrations see

Table 1).
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higher (40–1000 lM) glucose treatments (Fig. 4). If we

defined the term ‘productivity’ as the availability of glu-

cose to a unit biomass of bacteria per unit area and time,

our study revealed a unimodal (hump-like) curve in the

productivity–diversity relationship for bacterioplankton.

Cluster analysis based on the DGGE pattern of Batch 1

indicated a clear glucose-dependent clustering pattern

(Fig. 5). The two controls and three low glucose addition

(1–4 lM) treatments showed a similar bacterial commu-

nity structure and formed a unique cluster. Similarly,

samples from 6–40 lM glucose addition formed the other

group while leaving the four highest concentration treat-

ments in another separate cluster.

On the DGGE gel, seven major bands (Bands 1–7)
clearly showed a gradual decrease in relative intensity,

reflecting the decrease in relative abundance of particular

bacterial groups, while the other two (Bands 8 and 9)

showed a gradual increase. Phylogenetic analysis revealed

that five bacterial operational taxonomic units (OTUs)

repressed by nutrient addition were from the Gammapro-

teobacteria (mainly Alteromonadaceae) and two, from the

Alphaproteobacteria (Roseovarius spp.). Both OTUs stimu-

lated by the nutrient addition gradient were affiliated into

Vibrio spp. (Table 2).

Discussion

Experimental setup and approach

Generally, bacterioplankton in the two batches of our

incubation with different pulses (single pulse vs. three

pulses) of glucose addition showed similar responses in

terms of abundance, production, and community struc-

ture. Therefore, although this study was performed with-

out experimental replicates, the consistency of data from

the two batches suggested that our results were reliable

(Figs 1, 3 and 4). In our experimental setup, the preda-

tors were removed using filtration with 1.0 lm polycar-

bonate membranes, and flagellates and ciliates were not

observed in random inspections using epifluorescence

microscopy. Viral abundance in the microcosms was

reduced to about 10% of the ambient level and did not

increase significantly during the 3-day incubation (Fig.

S1). At this dilution, the contact rate between viruses and

their hosts is significantly reduced (Murray & Jackson,

1992) and thus, the virus-induced predation pressure on

bacteria was likely to be negligible (Weinbauer et al., 2007;

Zhang et al., 2007). Therefore, our experimental approach

successfully provided a bacterial community without graz-

ing pressure by flagellates and strongly reduced the pressure

of viral lysis.

The findings in our study were contradictory with

those of previous studies concerning the response of

Fig. 4. DGGE patterns of bacterioplankton in the two glucose

gradient batches at Day 3. Batch 1: glucose was added only at the

beginning of the incubation; Batch 2: glucose was added in equal

amounts on Day 0, 1 and 3; C1–2, G1–12: glucose additions (for

concentrations see Table 1)..DGGE bands chosen for sequencing are

indicated by arrows.

Fig. 5. Cluster analysis of bacterial community structure in Batch 1 microcosms revealed by DGGE analysis. C1–2, G1–12: glucose additions (for

concentrations see Table 1).
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natural bacteria to nutrient addition, which reveal no

significant influence of nutrient enrichment on bacterial

abundance (Kirchman, 1990; Kirchman & Rich, 1997; Eil-

ers et al., 2000; Kirchman et al., 2000). Although these

experiments were performed in various environments

with different types and concentrations of nutrients

added, a common circumstance was the presence of

viruses in their incubation systems. It was demonstrated

that viral lysis releases organic and inorganic material and

thus supports the growth of noninfected bacteria (Mid-

delboe et al., 1996), a phenomenon which matches the

‘killing the winner’ theory (Thingstad & Lignell, 1997;

Wommack & Colwell, 2000). Under this interference of

viral lysis, the total bacterial abundance may remain con-

stant or decreases rather than increases with nutrient

enrichment. In our study with eliminated lysis effects, the

bacterial abundance positively responded to a gradient of

glucose addition (Fig. 1) and revealed a pattern that dif-

fered from those experiments which had no reduction in

viruses (Kirchman, 1990; Kirchman & Rich, 1997; Eilers

et al., 2000; Kirchman et al., 2000). Nevertheless, further

investigation with both reduced and normal viral popula-

tion is necessary to elucidate the effects of viruses on the

response of bacterioplankton to nutrient manipulation.

Furthermore, the presence and absence of viruses could

also affect bacterial production. Middelboe & Lyck (2002)

note elevated bacterial production in virus reduction

treatments as compared with the control normal viral

concentration. However, other studies show inconsistent

effects of viruses on bacterial production (Middelboe

et al., 1996; Noble & Fuhrman, 1999; Weinbauer et al.,

2007; Zhang et al., 2007). Similar to the effects of viruses

on bacterial abundance, on the one hand, viruses could

reduce bacterial production via the lysis of infected cells

and, on the other hand, stimulate the other (both

infected and noninfected) cells by releasing the nutrients

and organic materials from the lysed cells. The balance

between these two contributions could result in variable

apparent effects of nutrient addition on bacterial produc-

tion. In addition, it is generally accepted that viruses

shape the bacterial community structure by host-specific

infection (Wommack & Colwell, 2000; Zhang et al.,

2007). Consequently, in an experimental setup with

viruses present, changes in bacterial community structure

would not be the pure response of the bacterial commu-

nity to nutrient addition. Thus, using the approach of

viral lysis reduction, as applied in our present study, the

dynamics of bacterial community structure should reflect

only the competition among the bacterial groups.

Bacterial responses to glucose addition

without lysis and predation

In our study, extra N and P were added to eliminate the

limiting effect of their deficiencies during the 3-day incu-

bation. Nutrient monitoring showed that they were not

limited in most of the incubations during the study

period (Fig. S2), however, except for two treatments with

the highest glucose addition (G12 in both batches of

microcosm). The deficiency in N might be a cause of the

sharp decrease in the bacterial productions in both G12

microcosms after Day 2 (Fig. 3). Theoretically, the

abundance and production in G12 of Batch 2 should be

sustainable at a certain level on Day 2 and 3 because a

new dose of glucose was added every day to replenish the

carbon source. The decrease in production observed in

Table 2. Phylogenetic affiliation of sequenced DGGE bands and their best matches in the GenBank

DGGE band Phylogenetic affiliation Isolation environments of best matches in the GenBank Identity (%)

Repressed by nutrient addition

1 Gammaproteobacteria (family Alteromonadaceae) Environmental clones from ballast water

or incubation enriched by coral mucus

98

2 Gammaproteobacteria (family Alteromonadaceae) Environmental clones from eutrophic

Victoria Harbor or coral near fish farm effluent

98

3 Alphaproteobacteria (genus Roseovarius) Environmental clones from various coastal environments 98

4 Gammaproteobacteria (family Alteromonadaceae) Environmental clones from eutrophic

Victoria Harbor or coral near fish farm effluent

98

5 Alphaproteobacteria (genus Roseovarius) Environmental clones from various coastal environments 98

6 Gammaproteobacteria (unclassified) Environmental clones from eutrophic Victoria

Harbor or incubation enriched by DMS

98

7 Gammaproteobacteria (unclassified) Environmental clones from various coastal

environments including eutrophic Victoria Harbor

99

Stimulated by nutrient addition

8 Gammaproteobacteria (genus Vibrio) Symbiotic Vibrio clones from various marine organisms 99

9 Gammaproteobacteria (genus Vibrio) Symbiotic Vibrio clones from various marine organisms 99

Refer to Fig. 4 for the position of DGGE bands.
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the later days, resembling the trend in G12 of Batch 1,

indicated the presence of a limiting factor on growth but

this case was due to N deficiency and not carbon. None-

theless, disregarding these two microcosms, results in the

other microcosms were still valid with respect to their

sufficient N and P, and a positive response of bacterial

abundance toward the carbon gradient was successfully

revealed.

In our observations, a higher carbon source stimulated

both the maximum [3H] leucine incorporation and the

bacterial abundance (Fig. 2). However, the stimulatory

effects were different for bacterial production and abun-

dance. The increase in the maximum bacterial abundance

in G9–G11 (60–100 lM glucose addition) was distinct,

while the increase in maximum bacterial production in

the same treatments was moderate (Fig. 2). This

suggested that in the relatively carbon-rich situation, bac-

teria increase their population size (via fast cell dividing)

rather than their biomass (via fast carbon incorporation).

Bacterial volume in G9–G11 was similar to that in the

treatments with low glucose addition (data not shown).

However, in the G12 microcosm (1000 lM glucose addi-

tion), a contrasting pattern between the maximum bacte-

rial production and abundance was observed (Fig. 2). In

addition, bacterial cells in G12 showed the largest volume

compared to other treatments (data not shown) and were

regarded as bacterial populations with higher protein and

DNA content (Lebaron et al., 1999; Eilers et al., 2000).

This indicated that when the nutrient supply is far

beyond their requirement, the bacterial growth strategy

seems to shift to increase their cell size with a high

carbon incorporation rate.

There is growing evidence showing that the ecological

behaviur of microorganisms is similar to those of macro-

organisms. Biogeographical patterns, species–area relation-
ships, and diversity–productivity patterns are confirmed

for microbial communities (Bell et al., 2005; Martiny

et al., 2006; Smith, 2007). The typical microbial diversity–
productivity relationship in aquatic ecosystems includes

random/flat, positive, negative, humped, and U-shaped

patterns. A meta-analysis study shows that humped diver-

sity–productivity patterns, in which diversity peaked at

intermediate productivity levels, account for 15% and

23% of the total diversity–productivity patterns which

occurred in experimental and natural systems, respectively

(Smith, 2007). It is hypothesized that the narrow range of

productivity in available studies should be one of the rea-

sons leading to an observation of a positive or negative

diversity–productivity curve, which is only part of a com-

plete unimodal curve (Horner-Devine et al., 2003; Smith,

2007). In our study, the productivity, defined as the

concentration of glucose availability, spanned three orders

of magnitude, and a clear unimodal humped diversity–

productivity curve was observed. In addition, based on the

above discussion, it is also possible that in those diversity–
productivity investigations within natural environments,

top-down effects from viruses disturb the apparent diver-

sity–productivity pattern of the bacterioplankton (Horn-

er-Devine et al., 2003; Smith, 2007). Considering our

incubation system with its single trophic level and without

spatial scale difference, top-down controlling factor,

community assembly history difference, or niche special-

ization, our observation suggested that species interactions

among bacterioplankton generate and maintain a humped

diversity–productivity pattern.

The bacterial community structure changed along the

glucose gradient indicating that specific bacterial groups

had a different efficiency for DOM utilization. Due to

their capability of higher growth rate, faster response to

nutrients, and better assimilation of carbon sources, some

lineages of Gammaproteobacteria are regarded as opportu-

nists and have been repeatedly observed in nutrient addi-

tion experiments using both culture-dependent and

culture-independent techniques (e.g. Lebaron et al., 1999;

Eilers et al., 2000; Massana et al., 2001; Pinhassi &

Berman, 2003). Among them, Vibrio and Alteromonas

were the most frequently found lineages after incubation,

and this was consistent with our results. However, our

study further showed that different Gammaproteobacteria

lineages responded differently to the glucose addition gra-

dient. In our incubation experiment, Vibrio spp. might

have had a stronger ability to use single carbohydrates

than Alteromonadaceae spp. as shown by the gradual

increase in their relative abundance along the gradient of

glucose addition up to 1000 lM (Fig. 3). This could be a

reason why they are the bacteria most often isolated in

marine environments.

Several studies suggest that the fast growth of opportu-

nists in micro- and mesocosm incubations might result

from the experimental setup such as dilution, filtration,

and confinement (Ferguson et al., 1984; Eilers et al.,

2000; Fuchs et al., 2000). However, our data indicated

that these interferences might be negligible compared to

those of glucose addition. There was clear difference in

the presence and relative abundance of specific OTUs

between the controls and the nutrient-added treatments,

especially in high glucose additions (Fig. 3). This pattern

should be the result of the gradient of nutrient addition

rather than experimental confinement.

In summary, using a virus reduction assay, our study

investigated the responses of marine bacterioplankton to

a large range of DOC (glucose) manipulation. Without

the disturbance of top-down factors, bacterioplankton

displayed different life strategies under different DOC

supply. A glucose concentration-dependent bacterial

community change resulted in a clear humped diversity–
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productivity relationship, which should be due to the

bacterial species competition for DOC. In addition, our

study highlighted the application of virus reduction tech-

nique in microbial ecology studies.
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