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INTRODUCTION

Organic carbon is exported from the upper ocean as
both particulate (POM) (Berelson 2001, Honjo et al.
2008) and dissolved organic matter (DOM) (Carlson et
al. 1994, Ducklow et al. 1995, Hansell 2002). DOM is

potentially an important form of export and is the dom-
inant organic carbon pool in the ocean (Hedges 1992).
About 50% of primary production (PP) in oceanic
ecosystems is ultimately released as DOM through
a variety of processes (Ducklow & Carlson 1992,
Williams 2000). DOM is mostly utilized by heterotro-
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ABSTRACT: Previous studies have focused on the role of labile dissolved organic matter (DOM)
(defined as turnover time of ~1 d) in supporting heterotrophic bacterial production, but have mostly
neglected semilabile DOM (defined as turnover time of ~100 to 1000 d) as a potential substrate for
heterotrophic bacterial growth. To test the hypothesis that semilabile DOM supports substantial
amounts of heterotrophic bacterial production in the open ocean, we constructed a 1-dimensional
epipelagic ecosystem model and applied it to 3 open ocean sites: the Arabian Sea, Equatorial Pacific
and Station ALOHA in the North Pacific Subtropical Gyre. The model tracks carbon, nitrogen and
phosphorus with flexible stoichiometry. This study used a large number of observations, including
measurements of heterotrophic bacterial production rates and standing stocks, and DOM concentra-
tion data, to rigorously test and constrain model output. Data assimilation was successfully applied to
optimize the model parameters and resulted in simultaneous representation of observed nitrate,
phosphate, phytoplankton and zooplankton biomass, primary production, heterotrophic bacterial
biomass and production, DOM, and suspended and sinking particulate organic matter. Across the 3
ocean ecosystems examined, the data assimilation suggests semilabile DOM may support 17 to 40%
of heterotrophic bacterial carbon demand. In an experiment where bacteria only utilize labile DOM,
and with more of the DOM production assigned to labile DOM, the model poorly represented the
observations. These results suggest that semilabile DOM may play an important role in sustaining
heterotrophic bacterial growth in diverse regions of the open ocean.
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phic Bacteria and possibly also Archaea (hereafter we
functionally describe both groups as ‘bacteria’) (Azam
1998), with a major fraction of the utilized DOM
respired to CO2 (del Giorgio & Cole 2000, Robinson
2008), and with a lower fraction assimilated into bio-
mass and ultimately reintroduced to the plankton food
web or lysed by viruses (Azam et al. 1983). Bacterial
activity also regenerates inorganic nutrients from
DOM, which in turn directly impacts PP. Thus bacteria
are a key component of the oceanic carbon cycle.

The marine DOM pool represents a broad contin-
uum in terms of its biological reactivity (Carlson 2002),
from refractory material turning over on time scales of
millennia to labile material turning over on time scales
of minutes to days, and semilabile material with inter-
mediate turnover times of months to a few years. Most
previous studies have tended to focus on labile DOM
(LDOM) compounds such as dissolved free amino
acids and monosaccharides (Kirchman 2002 and refer-
ences therein) as the major food sources for bacteria in
the ocean, largely neglecting the role of semilabile
DOM (SDOM) in supporting microbial growth. By def-
inition, SDOM is also biologically active, although at a
lower rate than LDOM. Since the bulk concentration of
SDOM is much higher than that of LDOM in open
ocean (Carlson 2002), SDOM has the potential to sup-
port a substantial amount of bacterial production
(Jackson 1988).

Since Redfield (1934) concluded that the elemental
composition of marine seston is relatively stable in the
world ocean (Redfield ratio, molar ratio of C:N:P =
106:16:1), marine biogeochemical models have tended
to use one of these elements as currency (usually N) to
trace plankton dynamics, assuming that other ele-
ments generally track proportionally to this currency at
the Redfield ratio. However, various studies suggest
flexible biomass stoichiometry may be needed to accu-
rately represent heterotrophic microbial dynamics in
the sea. The elemental composition of heterotrophic
bacteria differs markedly from phytoplankton (Kirch-
man 2000 and references therein), with bacterial bio-
mass frequently enriched in N and P relative to phyto-
plankton. Moreover, although variable in space and
time, bulk pools of DOM appear to be depleted in N
and P (Benner 2002) and bacterial growth appears
directly affected by DOM stoichiometry. Variability in
DOM stoichiometry may derive from alteration in
sources or sinks of specific substrates; for example,
phytoplankton production of C-enriched DOM has
been shown to occur under nutrient-limiting condi-
tions (Fogg 1966, Bjørnsen 1988, Nagata 2000). Alter-
natively, selective removal of N- and P-enriched DOM
substrates by bacteria also controls bulk DOM pool
stoichiometry (Hopkinson & Vallino 2005). Such non-
Redfield dependent DOM production and removal

mechanisms present major challenges for models of
bacterial growth dynamics.

Numerical modeling of bacterial dynamics in the
open sea is a new and important approach for generat-
ing and testing hypotheses regarding the role of bacte-
ria in ocean carbon and nutrient cycling. Data assimila-
tion provides a valuable tool to handle the increasing
number of observations of bacterial dynamics emerg-
ing from recent oceanographic studies. Data assimila-
tion methods seek to minimize differences between
modeling results and observations by objectively opti-
mizing model parameters (Lawson et al. 1995, Vallino
2000, Spitz et al. 2001, Friedrichs 2002, Ward et al.
2010). As field measurements are expensive and diffi-
cult, usually only a small number of the state variables
and rates in a given model are directly measured. Data
assimilation uses available observations to improve
confidence in other unknown variables and rates.

We constructed a marine ecosystem model to test the
hypothesis that a significant portion of bacterial pro-
duction is supported by SDOM in the open ocean. In
this study, LDOM are those with turnover time of ~1 d,
and SDOM are those with turnover time of ~100 to
1000 d depending on site, time and space. The model
emphasizes detailed heterotrophic microbial dynamics
and follows carbon (C), nitrogen (N) and phosphorus
(P) of the state variables with flexible stoichiometry.
The model was then applied to a 1-dimensional (1-D)
framework at 3 open ocean sites in the North Pacific
Subtropical Gyre, Arabian Sea and Equatorial Pacific.
The comparison of the 3 study sites in different open
ocean regions is used to reveal general patterns in the
open ocean controlled by regional-scale processes.
Data assimilation was conducted to minimize the mis-
fits between the model and observations through opti-
mizing the model parameters. By this approach, the
model was constrained by available data from differ-
ent aspects of each ecosystem, including concentra-
tions and/or rates related to nutrients, phytoplankton,
zooplankton and particulate organic matter (POM), as
well as bacteria and DOM.

METHODS

The ecosystem model. The ecosystem model simu-
lates flows and stocks of C, N and P through each of
the state variables including: generic phytoplankton
(PHY), N2-fixing Trichodesmium spp. (TR) and uni-
cellular diazotrophs (UN), heterotrophic bacteria
(BA), protozoan (PRT) and metazoan (MZ) zooplank-
ton, labile (LDOM) and semilabile DOM (SDOM),
particulate detritus (DET) and inorganic nutrients
(ammonium, NH4; nitrate, NO3; and phosphate,
PO4) (Fig. 1). Chlorophyll a of PHY, TR and UN are
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also simulated independently from
biomass. Higher trophic levels (those
higher than PRT and MZ) are implic-
itly represented in order to close the
model. Refractory DOM is also
implicitly represented as loss terms
for some state variables. Table 1 lists
all the state variables and their ab-
breviations, as well as the tracked
components (C, N, P and/or chloro-
phyll a) of each variable. The 2 N2-
fixing groups were disabled for the
Arabian Sea and Equatorial Pacific
models to reflect that N2-fixation was
greatly inhibited in the model in
these relatively inorganic nitrogen-
enriched regions.
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Fig. 1. Flow diagram of the model showing trophic structure and state variables. Dashed borders for ‘N2’, ‘Higher levels’ and
‘Refractory DOM’ indicate they are not explicitly modeled. Several state variables are grouped by dashed rectangles. A flow ar-
row ending on a grouping rectangle means the flow applies to all the state variables inside the rectangle. Unicellular diazotroph 

and Trichodesmium are disabled at the AS (Arabian Sea) and EQP (equatorial Pacific) sites

Name Component Definition
C N P CHL

PHY X X X X Non-diazotrophic phytoplankton
TR X X X X Diazotrophic Trichodesmium spp.
UN X X X X Diazotrophic unicellular phytoplankton
BA X X X Heterotrophic bacteria
PRT X X X Protozoan zooplankton
MZ X X X Metazoan zooplankton
LDOM X X X Labile dissolved organic matter
SDOM X X X Semilabile dissolved organic matter
POM X X X Particulate organic matter
NH4 X Ammonium
NO3 X Nitrate
PO4 X Phosphate

Table 1. List of the modeled state variables. The tracked components including
carbon (C), nitrogen (N), phosphorus (P) and chlorophyll a (CHL) for each state

variable are marked with ‘X’
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The model includes flexible stoichiometry for all
compartments. To integrate flexible stoichiometry with
the phytoplankton growth scheme, we selected the
Droop equation (Droop 1974, McCarthy 1980, Droop
1983) and adopted the model of Geider et al. (1998)
with some changes. Thus the model allows phyto-
plankton to take advantage of high light to store more
carbon when ambient nutrient levels are depleted and
to store more nutrients when light is low (Bertilsson et
al. 2003). In addition, when the N or P quota is lower
than the Redfield value, the model determines the
excretion of SDOM by phytoplankton (Fogg 1966,
Bjørnsen 1988, Nagata 2000), as will be discussed later.

Here we briefly describe the model schemes for
heterotrophic bacterial dynamics. The full model
description and equations are provided in Supple-
ment 1 available at www.int-res.com/articles/suppl/
a060p273_supp.pdf. The heterotrophic bacterial
scheme in this model has several key features as
detailed here:

(1) The DOM is divided into LDOM and SDOM,
which are produced by autotrophs (including PHY, TR
and UN), protozoa, metazoa, bacteria, dissolving detri-
tus and implicit higher trophic levels (Fig. 1) as follows.

To represent passive diffusion of DOM out of phyto-
plankton cells (Fogg 1966, Bjørnsen 1988), the phyto-
plankton in our model release LDOM as a first order
function of phytoplankton biomass (default 5% per
day) at the same C:N:P ratio as the biomass. To repre-
sent the overflow model of DOM release (Fogg 1966,
Nagata 2000), the phytoplankton in our model also
excrete carbohydrate (C only without N or P) at a fixed
fraction of PP (default 5%), with the assumption that
75% of this carbohydrate excretion goes to labile dis-
solved organic carbon (DOC) pool and the other 25%
to the semilabile DOC pool. The model also considers
that phytoplankton release DOM in order to adjust
their stoichiometry to approach the Redfield ratio:
SDOM is excreted at high C:N and/or C:P ratio if
phytoplankton C is in excess to N or P. The time scale
for this adjustment is 2 d, which means this SDOM
excretion will adjust the stoichiometry of phytoplank-
ton to the Redfield ratio in 2 d if the rate of excretion is
unchanged. For N2-fixing groups TR and UN in the
model, part (by default 36%) of their newly fixed N
(from N2 fixation) is released equally as both labile dis-
solved organic nitrogen (DON) and ammonium to
reflect observations (e.g. Glibert & Bronk 1994, Mul-
holland et al. 2004, Mulholland 2007).

Zooplankton, including both protozoa and metazoa,
release a portion of ingested organic matter as DOM
via both sloppy feeding and excretion. The model does
not separate these 2 processes, but assumes a certain
percentage of the total grazed C by protozoa and
metazoa is released as DOC. The ratio of released

DON or dissolved organic phosphorus (DOP) to re-
leased DOC is same as the N:C or P:C ratio of the zoo-
plankton food source. The model then partitions the
released DOC by default with 75% to the labile pool
and the other 25% to the semilabile pool. In addition,
the release rates of semilabile DON and DOP are
adjusted accordingly if the zooplankton cellular N:C
and P:C are different from their predefined reference
ratios, which also helps zooplankton to stabilize their
stoichiometry toward their reference ratios. The
removal of metazoa, implicitly represented in the
model as grazing by higher trophic levels, contributes
to production of SDOM, remineralization of nutrients,
and carbon respiration.

Both the carbohydrates release of phytoplankton and
total DOC release by zooplankton are partitioned by
default as 25% to the labile pool and 75% to the semi-
labile pools. But there is no evidence to directly sup-
port this partitioning. The uncertainty related to this
partitioning will be discussed later.

Although bacteria are net DOM consumers, the first-
order mortality of bacteria also contributes to the
LDOM pool in the model, which always reduces the
net flux of LDOM into bacteria. The final source of
DOM is from detritus, which dissolves and produces
SDOM as a first-order function of detritus concentra-
tion when it sinks through the model domain. The
sinking speed and the dissolution rate of detritus are
controlled by optimizable parameters.

(2) The lability of SDOM is much lower than that of
LDOM. The model first determines bacterial utilization
of DOC by assuming available labile DOC (ALC)
equals the labile DOC concentration while available
semilabile DOC (ASC) only equals a portion of semi-
labile DOC concentration:

(1)

where CLDOM and CSDOM are concentrations of labile
and semilabile DOC, and rSDOM is an optimizable para-
meter controlling the lability of semilabile DOC. Then
the utilization rates of labile and semilabile DOC by
bacteria are computed using Monod functions respec-
tively:

(2)

(3)

where ULDOC and USDOC are utilization rates of labile and
semilabile DOC, is the maximum bacterial growth
rate integrating other limiting factors such as nutrients
and temperature, CBA is the bacterial carbon biomass and
kDOM is the half-saturation concentration related to ‘avail-
able’ DOC. Thus, the ratio of labile to semilabile DOC
utilization is determined by parameter rSDOM in Eq. (1).

μ̂BA

U C
k

SDOC BA BA
DOM

=
ASC

ASC + ALC
μ̂ ⋅ ⋅

+

U C
k

LDOC BA BA
DOM

=
ALC

ALC + ASC
μ̂ ⋅ ⋅

+

ALC = ASC =LDOM SDOM SDOMC r C, ,⋅
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(3) The model then determines the bacterial utiliza-
tion of DON and DOP based on the computed utiliza-
tion rate of DOC. Due to the high lability of LDOM, the
model assumes all LDOM is used quickly and the ratio
of labile DOC, DON and DOP utilization equals the
C:N:P ratio of the bulk LDOM pool. However, the
model considers that bacteria have the capability to
use SDOM with higher N:C and P:C ratios than the
bulk SDOM pool (Eq. 15 in Supplement 1). This mech-
anism allows bacteria to take up excess N and P and
reduces relative nutrient contents in the SDOM pool,
consistent with observations. The bacteria also take up
inorganic nutrients, which alleviates nutrient limitation
on bacterial growth (Eqs. 16 & 17 in Supplement 1).

(4) Bacterial growth efficiency (BGE), the ratio of
bacterial production (BP) to bacterial carbon demand
(BCD, equals BP + bacterial respiration), normally
increases with the BP as shown by del Giorgio & Cole
(2000). To reflect this observation, the portion of assim-
ilated C to be respired in the model is inversely related
to BCD. Thus a higher BCD results in a higher propor-
tion of BP and therefore a higher BGE, and vice versa.
This mechanism also impacts the remineralization rate
of DOM by bacteria. When BGE is lower and more C is
respired by bacteria, the C left for bacterial growth is
less and therefore the bacterial requirements for nutri-
ents (N and P in the model) are also less. Thus, with
lower BGE, nutrients are more likely in excess and
therefore the remineralization rates are higher.

Study sites and modeling framework. We selected
3 open sites for our study. One site was the long-
term biogeochemical observatory, Station ALOHA
(22.75° N, 158.00° W), the field site for the Hawaii
Ocean Time-series (HOT) program, established in the
North Pacific Subtropical Gyre in 1988 (Karl et al.
2001, Doney & Ducklow 2006). The station is 100 km
north of Oahu, Hawaii, USA with a bottom depth of
~4700 m. The station is within the southward return
flow of the eastern gyre with relatively weak horizon-
tal transport (Karl et al. 2001), and thus represents a
good site to apply 1-D ecological modeling. This study
site will be referred to as HOT hereafter.

For comparison, we selected other tropical/subtropi-
cal oceanic sites with available data and contrasting
physical regimes in the Arabian Sea (AS) and Equato-
rial Pacific (EQP). US Joint Global Ocean Flux Study
(JGOFS) off-shore site S7 was the selected AS site,
located at 16° N, 62° E. The EQP site is located at 0° N,
140° W. Because seasonal monsoons occur at the AS
and strong upwelling occurs across the EQP com-
pared to the strongly stratified condition at HOT,
these 2 sites were expected to show different micro-
bial dynamics. As the modeling framework for these 2
sites has already been set up by others (Friedrichs et
al. 2006, 2007), the comparison study can be con-

ducted by embedding our ecosystem model into the
existing model framework, along with some recent
improvements, such as assimilating bacterial and
DOM data.

1-D frameworks for the upper ocean were set up
based on data availability for these sites to cover years
1995 for the AS site, 1992 for the EQP site and 2002 at
HOT. At the sites in the AS and the EQP, 20 layers
were used to cover the upper 150 m, with 10 surface
layers of 5 m each and 10 bottom layers of 10 m each.
At HOT, the framework used 25 layers, with 10 surface
layers of 5 m each and 15 bottom layers of 10 m each,
covering the upper 200 m water column. A deeper bot-
tom was used for HOT because the observed nutrient
levels at 200 m were much less variable than those at
150 m. The model is forced by physical fields such as
light, temperature, mixed layer depth, vertical velocity
and diffusivity (see Supplement 1 for more details).

Data assimilation. A variational adjoint scheme
(Lawson et al. 1995) was used for the parameter opti-
mization process including the following procedures.
(1) A cost function was constructed to evaluate the mis-
fits between the observations and modeled results. A
lower cost function indicates a better fit of the model to
observations. A cost function value of less than 1.0
indicates an ideal fit of the model to observations. (2)
An adjoint model was constructed for the ecosystem
model using the auto-differentiation software TAPE-
NADE 2.1 (Institut National de Recherche en Informa-
tique et en Automatique [INRIA], France) to compute
the gradients of the cost function with respect to the
model parameters. (3) A limited-memory quasi-New-
ton optimization software M1QN3 3.1 (Gilbert &
Lemaréchal 1989) was adopted to use the computed
gradients from the adjoint model to determine the
direction and the optimal step size by which the model
parameters need to be modified in order to reduce the
cost function. These procedures were conducted itera-
tively until the preset criteria of low gradients of the
cost function with respect to the model parameters
were met. For more details of the assimilation scheme
as applied to this framework, see Friedrichs et al.
(2006, 2007) and also Supplement 1.

Observations to be assimilated were obtained for AS
and EQP online at http://usjgofs.whoi.edu/jg/dir/jgofs/,
and for HOT at http://hahana.soest.hawaii.edu/hot/
hot-dogs/interface.html. The bacterial production data
at HOT were measured during some, but not all HOT
cruises (Church et al. 2006).

We included as many data types as possible: up to 17
types of observations were assimilated for each site
(several data types were unavailable for AS and EQP)
(Table 2). The corresponding model equivalents used
to compute the cost function are also listed in Table 2
for each type of the assimilated observations. For most
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observational types, vertical profiles were assimilated.
About 5 profiles of each observational type were
assimilated for AS, up to 40 profiles of each type for
EQP and about 10 profiles of each type for HOT
(Table 2). The differences arise from different cruise
schedules at each site. Instead of vertical profiles, only
one single point was assimilated for several observa-
tional types as described below. Because of the
extreme difference in nutrient levels in and below the
mixed layer, it is difficult for the model to fit the nutri-
ent profiles (Friedrichs et al. 2006). In addition, the
nutrient level below the mixed layer is more likely
determined by physics than by biological processes
and also has less influence on the PP compared to the
surface nutrient level. Thus only the averaged nitrate
and phosphate concentrations in the mixed layer were
assimilated (not profiles). Zooplankton tows from sur-
face to approximately 175 m provided the integrated
biomass so only volume-averaged zooplankton bio-
mass was assimilated. Finally, sediment trap data were
only available at 1 depth per sampling date. Refer to
Supplement 1 for more details.

Not all the parameters could be constrained with the
available data, and thus not all were optimized. The
parameters were characterized as: unoptimizable,
optimized but poorly constrained because of high
uncertainty, or optimized and well-constrained (see
Supplement 1 for more details).

RESULTS

Fit of modeling results to observations

The data assimilation scheme minimized the cost
functions, i.e. the differences between the observa-
tions and the modeled results (Table 3) by optimiz-
ing the model parameters (Table S3 in Supple-
ment 1). Although not all the parameters were
optimized and well-constrainable by assimilated
observations (Table S3), the gradients of the cost
functions for all parameters were low enough to
indicate the model reaches at least local optima.
The low gradients also revealed that the cost func-
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Symbol Assimilated observation Model equivalent Assimilated profiles
(AS, EQP, HOT)

NO3 Average nitratea in mixed layer NO3 at surface grid 6, 5, 10
PO4 Average phosphate in mixed layer PO4 at surface grid 6, 5, 10
MZc Average mesozooplankton C biomass in surface 175 m MZ C biomass at surface grid 4, 24, 4
PHYn Small phytoplankton N biomass estimated from cell N biomass of PHY, UN 6, 8, 9

counts of Prochlorococcus, Synechococcus and
pico-eukaryotes

CHL Chlorophyll a Chlorophyll a of PHY, TR and UN 6, 8, 10
PP Primary production Primary production of PHY, TR and 5, 27, 9

UN minus their DOM excretion
(only particulate PP)

BAc Bacterial C biomass estimated from cell counts BA carbon biomass 5, 13, 9
BP Bacterial production from leucine incorporation BA production 4, 41, 3
sDOC Semilabile DOC estimated as difference of total DOC SDOM carbon 5, 6, 10

and deep-ocean DOC
sDON Semilabile DON estimated similarly to DOC SDOM nitrogen 5, 0, 10
sDOP Semilabile DOP estimated similarly to DOC SDOM phosphorus 0, 0,10
POC Suspended POC C of PHY, TR, UN, PRT and DET 5, 2, 10
PON Suspended PON N of PHY, TR, UN, PRT and DET 5, 6, 10
POP Suspended POPb P of PHY, TR, UN, PRT and DET 0, 0, 10
STc C flux collected by sediment trap DET C flux projected at 22, 20, 9

at depth 800 m for AS & EQP, 150 m for HOT observational depth
STn N flux collected by sediment trap (same depth as STc) DET N flux projected at 22, 20, 9

observational depth
STp P flux collected by sediment trap (same depth as STc) DET P flux projected at 0, 0, 9

observational depth
aLow-level nitrogen was used at HOT. bEstimated from measurements of particulate phosphorus, thus theoretically POP data
used here is not completely organic

Table 2. Assimilated observations and their model equivalents used for computation of the cost function. Numbers of assimilated
vertical profiles are also listed. Only single points of NO3, PO4, MZc, STc, STn and STp were assimilated. Some observations
are unavailable for all the sites: listed as ‘0’ profiles assimilated. Modeling sites: AS: Arabian Sea, EQP: Equatorial Pacific,
HOT: Hawaii Ocean Time-series Station ALOHA. C: carbon; N: nitrogen; P: phosphorus; DOM, DOC, DON, DOP: dissolved
organic matter, carbon, nitrogen, phosphorus; DET: particulate detritus; POC, PON, POP: particulate organic carbon, nitrogen, 

phosphorus. See Table 1 for other abbreviations
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tion would not change significantly with relatively
small changes in the parameters, i.e. the optimized
model was not sensitive to the parameters. The full
comparison of each observation to its model equi-
valent is included in Fig. S1 in Supplement 2, avail-
able at www.int-res.com/articles/suppl/a060p273_
supp.pdf.

The averaged observations and the averaged model
equivalents through the whole model domain were
mostly comparable at each of the 3 sites (Table 3).
However, some variables did not fit as well as others;
for example, mesozooplankton biomass at AS was sig-
nificantly underestimated by the model. For the vari-
ables related to microbial dynamics, both bacterial bio-
mass and production were slightly underestimated by
the model for EQP, and semilabile DON and DOP were
slightly overestimated for HOT.

Modeled heterotrophic microbial
dynamics

The modeled average carbon
stocks and fluxes over the whole
model domain for heterotrophic mi-
crobial dynamics, including those
related to bacteria, LDOM and
SDOM, are shown in Fig. 2. These
stocks and fluxes are normalized to
the PP for each site (stocks normal-
ized to 1 d of PP) in order to compare
the relative strengths of fluxes at dif-
ferent sites. The complete figures for
all the modeled stocks and fluxes (in-
cluding C, N and P) are shown in
Fig. S2 in Supplement 3, available
at www.int-res.com/articles/suppl/
a060p273_supp.pdf.

DOM stocks and fluxes

As shown in Fig. 2, the modeled
SDOM always dominated the total
DOM pool, and was 74, 80 and 230 ×
larger than the modeled LDOM at
AS, EQP and HOT respectively. In
relation to PP, LDOM concentra-
tions were similar across the 3 sites,
while SDOM concentrations varied
significantly at the 3 sites. SDOM
tended to accumulate at oligo-
trophic HOT, more than at the
eutrophic AS and mesotrophic EQP.
The modeled turnover time of
SDOM (defined as concentration
divided by influx) was long: 1100 d

at HOT, but much shorter with 140 and 86 d at AS and
EQP, respectively (Table 4). Meanwhile, the turnover
times of LDOM were ~1 d for all the 3 sites (Table 4).

DOM was produced in the model from multiple
sources, as specified by the model equations, but the
relative amounts varied from site to site, and between
LDOM and SDOM (Fig. 3). Excretion by phytoplank-
ton, protozoa and metazoa contributed to both LDOM
and SDOM pools, the mortality of bacteria contributed
to LDOM and dissolution of detritus contributed to
SDOM (Fig. 1). The total production rates of labile
DOC from all sources were ~36, 21 and 34% of PP at
AS, EQP and HOT respectively, and the production
rates of semilabile DOC were ~21, 21 and 8% of PP
(Fig. 3). Thus about 60% of organic matter produced
by primary producers ultimately passed through the
DOM pool at AS, and 40% at EQP and HOT. Note the
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NO3 PO4 MZc PHYn CHL PP BAc BP sDOC

AS
Observed average 3.4 0.56 0.79 0.48 0.36 1.6 0.74 0.15 26
Modeled average 3.2 0.58 0.60 0.46 0.35 1.6 0.74 0.16 25
Cost function before 24 2.1 5.4 48 6.2 150 8.7 10 24
Cost function after 6.8 1.7 1.4 38 4.4 11 5.5 7.3 3.1
EQP
Observed average 4.9 0.67 0.23 0.15 0.23 0.85 0.48 0.070 19
Modeled average 4.01 0.60 0.20 0.15 0.21 0.86 0.37 0.059 16
Cost function before 16 5.8 18 81 87 290 7.5 9.7 49
Cost function after 4.0 5.3 5.5 18 12 21 1.3 3.9 13
HOT
Observed average 0.005 0.031 0.18 0.08 0.12 0.38 0.31 0.046 33
Modeled average 0.006 0.008 0.15 0.10 0.12 0.38 0.28 0.046 20
Cost function before 27000 1.3 4.3 2.9 150 1500 21 3.2 15
Cost function after 1.3 1.1 1.4 1.4 10 19 15 1.8 1.7

sDON sDOP POC PON POP STc STn STp

AS
Observed average 2.9 4.7 0.92 1.1 0.13
Modeled average 2.9 5.0 0.87 1.1 0.14
Cost function before 5.9 3.2 6.1 7.8 8.8
Cost function after 1.7 2.4 5.0 5.4 4.7
EQP
Observed average 2.0 0.49 0.40 0.055
Modeled average 2.2 0.46 0.38 0.044
Cost function before 8.9 59 8.9 9.1
Cost function after 2.9 11 2.6 2.8
HOT
Observed average 2.1 0.10 1.5 0.22 0.009 2.7 0.33 0.009
Modeled average 2.8 0.15 1.3 0.23 0.012 3.1 0.43 0.011
Cost function before 88 27 2100 3500 94 130 216 0.88
Cost function after 2.1 3.7 2.5 1.9 2.4 0.86 1.1 0.67

Table 3. Comparison of observations and modeling results and the cost function
values before and after data assimilation at AS, EQP and HOT. The table gives
averaged values of all the assimilated data points and their model equivalents. See
Table 2 for abbreviations. All concentrations are in mmol m–3 except that CHL is in
mg m–3; PP and BP are in mmol m–3 d–1; STc, STn and STp are in mmol m–2 d–1. 

Blank cells: not applicable
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PP referred to in this section and in the dis-
cussion section includes both particulate
and dissolved PP, i.e. PP producing particu-
late and dissolved organic matter, respec-
tively, because DOM production by phyto-
plankton is a key issue of this study. The
data assimilation only used particulate PP as
the model equivalent to the observations, as
dissolved production data were not avail-
able for these sites.

Fig. 3 shows much lower PP-normalized
labile DOC production at EQP than the
other 2 sites. This difference is due to the
following reasons. The labile DOC in the
model was produced by phytoplankton in 2
ways: (1) passive excretion which was set
to 5% of phytoplankton biomass per day
for all 3 sites (Table S3 in Supplement 1)
and (2) active carbohydrate excretion
which was the same proportion of PP for all
the 3 sites and thus did not result in lower
PP-normalized labile DOC production at
EQP. Because the ratio of phytoplankton
biomass to PP (i.e. turnover time) was simi-
lar (~2 d) for both AS and HOT but was
only 1 d for EQP (Fig. S2 in Supplement 3),
the same 5% of biomass per day for passive
labile DOC excretion equals ~10% of PP at
AS and HOT, but only equals ~5% of PP at
EQP. When the model partitioned DOC
excretion to labile and semilabile pools,
75% of protozoan DOC excretion (ex) is
assigned to labile DOC (and 25% to semil-
abile DOC) at EQP, but ~90% of it is
assigned to labile DOC at AS and HOT
(Fig. 2). Before the data assimilation the
partitioning parameter ƒex,PRT was set to
default 75% for all the 3 sites. This parame-
ter was optimized to a value of 90% for AS
and HOT but could not be optimized at
EQP. These results indicated that lower
passive labile DOC excretion and the lower
partitioning to labile DOC by protozoa
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Fig. 2. Vertically and temporally averaged mod-
eled carbon fluxes (arrows) and stocks (boxes) for
heterotrophic microbial dynamics. They are nor-
malized to primary production (stocks normalized
to amount of primary production in 1 d) at (a) AS,
(b) EQP and (c) HOT. 1 unit C (primary produc-
tion in 1 d) = 0.770 (AS), 0.876 (EQP) and 0.312
(HOT) mmol C m–3 (d–1). Dashed lines: implicit
loss to R-DOM. R-DOM: refractory DOM. Model-
ing sites: AS: Arabian Sea; EQP: Equatorial Pa-
cific; HOT: Hawaii Ocean Time-series Station 

ALOHA. For other abbreviations see Table 1
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were likely 2 major causes of the lower PP-normalized
labile DOC production at EQP.

Fig. 3 also shows much lower PP-normalized semi-
labile DOC production at HOT than the other 2 sites.
Semilabile DOC production was dominated by detritus
dissolution at AS and EQP, but the detritus dissolution
was very low at HOT. Such results may not be unex-
pected because HOT is perennially oligotrophic and
maintains the lowest rates of community production
among the 3 sites studied, thus the rate of detritus pro-
duction is likely low in this ecosystem. The data assim-
ilation used observations of both concentrations (sus-
pended organic particles) and fluxes (sediment traps)
of detritus to constrain the model, improving confi-
dence in modeled detritus production and dissolution

rates. Thus, the modeled low detritus dissolution rate
and therefore the low semilabile DOC production rate
at HOT appear consistent with observations.

In summary, the modeled labile DOC production
was higher than semilabile DOC production at AS and
HOT, and was about the same as semilabile DOC pro-
duction at EQP.

Bacteria

The modeled ratio of BCD, i.e. the utilization of DOM
by bacteria to PP, was in the range of 36 to 52%
(Fig. 4). Bacteria respired most of the consumed carbon
and their growth efficiencies (BGE) were 34, 17 and
32% for AS, EQP and HOT respectively (Fig. 4). The
resulting bacterial production (BP) ranged from 6 to
18% of PP. BGE at EQP was significantly lower than
AS and HOT. As shown above, BP was constrained by
observations, and the average observed and modeled
BP were comparable at the sites except EQP where
modeled BP was underestimated by 18%. As BGE =
BP/BCD, this 18% correction of BP could increase BGE
to ~20% at EQP, still much lower than the other 2 sites.
Alternatively, BCD could be modified such that lower
BCD at EQP would increase BGE, or increases in BCD
at AS or HOT could reduce BGE in these systems.
However, EQP has the lowest BCD/PP ratio among the
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AS EQP HOT

Heterotrophic bacteria 4.4 6.2 6.4
Labile DOM 1.1 1.0 1.2
Semilabile DOM 140 86 1100

Table 4. Average turnover time (d) of heterotrophic bacteria,
LDOM and SDOM at AS, EQP and HOT in terms of carbon.
Turnover time of bacteria is calculated as the ratio of biomass
to bacterial production (after respiration). Turnover time of
DOM is calculated by the ratio of stock to the influx of DOM. 

For abbreviations see Table 2
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sites (Fig. 4). Thus if the model could be adjusted to
make the BGE similar at the 3 sites, it would result in
even lower BCD/PP than the current low level for EQP,
or would result in an even higher BCD/PP than the cur-
rent high level for AS and HOT, and the difference of
BCD/PP for the 3 sites would become even larger. The
range in measured BGE in the ocean is large (<1 to
>60%) and for the open ocean the mean measured
BGE is 15 ± 12% (±SD) (del Giorgio & Cole 2000). BGE
measurements are difficult to perform, with much
uncertainty (del Giorgio & Cole 2000 and references
therein). Thus our modeled BGE values are within the
observed ranges. Given that the modeled BP was con-
strained by observations and that our modeled derived
estimates of BGE were consistent with previously pub-
lished estimates, the resulting modeled DOM utiliza-
tion rates by bacteria (i.e. BCD) appear reasonable.

Bacteria used both LDOM and SDOM to support their
carbon demand in the model. The model predicted that
SDOM supplied a substantial amount of total carbon
utilization by bacteria: 32, 40 and 17% for AS, EQP and
HOT respectively (Fig. 4), which lent support to the
key hypothesis of the present study.

DISCUSSION

After optimization by the data assimila-
tion, the model supported the hypothesis
that SDOM is an important source for the
bacterial carbon requirement in the open
ocean. In this section, we examine how
well the modeled microbial dynamics are
constrained by the data, and point out key
uncertainties.

Optimization of microbial dynamics

Here we exclude other observations and
consider just the SDOM concentrations
and bacterial production rates to illumi-
nate how the data assimilation con-
strained the microbial dynamics. This is
done with reference to the conceptual
scheme in Fig. 5.

First we consider the modeled total
DOM production by phytoplankton and
zooplankton. The modeled total DOC pro-
duction by phytoplankton alone was 22,
13 and 17% of primary production for AS,
EQP and HOT respectively (Fig. 3), and
the modeled total DOC production by zoo-
plankton (protozoa plus metazoa) was 25,
22 and 23% of their ingested prey organic

carbon for the 3 sites (Fig. S2 in Supplement 3). Nagata
(2000) concluded that in the ocean, extracellular
release of DOC typically accounted for 10% of primary
production, and protozoan grazers can release 20 to
30% of ingested prey organic carbon as DOC. Our
modeled DOC production by phytoplankton was
slightly higher than the observations and our modeled
DOC production by zooplankton was within the
observed range. But viral infection of host cells (phyto-
plankton and bacteria) could also result in substantial
release of DOM (Nagata 2000), and thus the modeled
DOC production by phytoplankton might be closer to
reality. Overall, the modeled total DOC production
rates by phytoplankton and zooplankton were compa-
rable with general observed patterns in the ocean.

Following its release from the food web, the parti-
tioning of DOM between its labile and semilabile com-
ponents was rationalized through the model output
(Step 1, Fig. 5). The model showed phytoplankton allo-
cated 30, 29 and 20% of total DOC release to semi-
labile DOC at AS, EQP and HOT respectively, and
zooplankton allocated 16, 27 and 13% of total DOC
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Fig. 5. Conceptual scheme showing how the modeled microbial dynamics
are constrained by observations. The dashed arrows represent the fluxes that
are uncertain; the shadowed boxes and arrows indicate they are directly con-
trolled by observations. Step 1: partitioning between labile and semilabile
dissolved organic matter (DOM); Step 2: all labile DOM supply to bacteria;
Step 3: bacterial production and bacterial growth efficiency (BGE) determine
total bacterial DOM requirement; Step 4: the unsatisfied bacterial require-
ment from labile DOM will be met by semilabile DOM (flux of Step 3 minus
flux of Step 2). The BGE and the loss of semilabile DOM link to and can be 

constrained by other properties of the ecosystem
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release to the semilabile pool at the 3 sites (Fig. 3).
Unfortunately there are no observations on which to
compare the model performance to this partitioning.

LDOM has a very short turnover time (Table 4) and
the fluxes in and out the LDOM pool were tightly cou-
pled. The rate of LDOM utilization by bacteria was
directly determined by the production of LDOM (Step
2, Fig. 5). The observations of bacterial production can
be converted to a total bacterial DOM requirement
using bacterial growth efficiency (BGE) (Step 3, Fig. 5),
and then can act to constrain the model. However,
there is uncertainty in BGE. We do not have direct con-
straints on BGE. However, variations in BGE affect
bacterial nutrient remineralization rates, and these in
turn have direct impacts on other components of the
model. Thus BGE is constrained indirectly by observa-
tions like nutrient concentrations and primary produc-
tion. At all 3 sites, the optimization procedure was
always able to well-constrain the parameter 
(bacterial maximum active respiration rate) (Table S3
in Supplement 1), which greatly determined BGE in
the model.

The total bacterial DOM requirement based on the
constrained BP and BGE (Step 3, Fig. 5) needs to be
met by a combination of LDOM (Step 2, Fig. 5) and
SDOM. The unsatisfied bacterial DOM requirement
after LDOM uptake determines the bacterial utiliza-
tion rate of SDOM (Step 4, Fig. 5). The relative
strength of fluxes between Steps 2 and 3 in Fig. 5 was
the ultimate parameter used to test our hypothesis
about the importance of SDOM for bacterial nutrition
in the open sea.

The bacterial utilization rate of SDOM, together with
the observations of SDOM stocks, will then be used to
optimize the relative lability of the SDOM pool (Fig. 5).
The lability of SDOM in the model was controlled by
the parameter rSDOM, which defines the relative lability
between SDOM and LDOM (Eq. 1). Initially, rSDOM was
set to 0.5% for all the 3 sites, i.e. the lability of SDOM
was 0.5% of the lability of LDOM. After the data
assimilation, however, rSDOM was optimized to rela-
tively well-constrained values of 0.68, 0.87 and 0.10%
for AS, EQP and HOT respectively (Fig. 6), which
resulted in average utilization times of semilabile DOC
(defined as its concentration divided by its utilization
rate by bacteria) of 179, 124 and 1330 d respectively
(Table 5). From the same starting lability for SDOM,
the data assimilation significantly increased the lability
at AS and EQP and decreased the lability at HOT in
order to better fit the assimilated observations.
Although the in situ lability of SDOM was not mea-
sured, the other available observations constrained the
model to different SDOM lability for the 3 sites.
Because the SDOM lability equals the ratio of utiliza-
tion rates to stocks of SDOM, the relatively well-con-

strained SDOM lability (Fig. 6), together with the
directly constrained SDOM stocks, further added to
our confidence in the modeled utilization rates of
SDOM.

Finally, some of the SDOM production is exported by
mixing or converted to refractory DOM (R-DOM) pro-
duction before it can be utilized by bacteria (‘loss’ step,
Fig. 5). A large portion of the SDOM was produced

rmax,BA
A
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Fig. 6. Optimizing the parameter rSDOM which defines the rel-
ative lability between labile and semilabile dissolved organic
carbon (DOC) at modeling sites AS (Arabian Sea), EQP
(Equatorial Pacific) and HOT (Hawaii Ocean Time-series Sta-
tion ALOHA). The optimized values and their uncertainties
are shown for each site. The dashed line represents the initial 

value of 0.5% used for all the 3 sites

AS EQP HOT

Concentration (mmol C m–3) 22.9 15.7 28.2
Production (mmol C m–3 day–1) 0.160 0.181 0.0246
Bacterial utilization rate 0.128 0.126 0.0212
(mmol C m–3 day–1)

Bacterial utilization/ 79.8 69.6 86.1
production (%)

Physical export/production (%) 15.4 26.1 19.0
Conversion to R-DOM/ 3.8 1.4 43.0
production (%)

Imbalance (%) +1 +2.9 –48.1
Realized utilization time (d) 179 124 1330

Table 5. Modeled average semilabile DOC concentration,
production and utilization rates at AS, EQP and HOT. Also in-
cluded are sinks of semilabile DOC relative to its production
rate, including bacterial utilization, physical export and con-
version to refractory DOM (R-DOM). For the imbalance be-
tween semilabile DOM production and sinks (relative to pro-
duction), positive imbalance indicates production exceeding
than sinks in the modeled year (DOC accumulates); negative
imbalance indicates sinks exceeding production and a net de-
cline in DOC. The realized utilization time of semilabile DOC
is defined as the ratio of its concentration to its utilization rate 

by bacteria. For abbreviations see Table 2
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by dissolving detritus, whose rates were constrained
by the observations as described previously. In order to
fit the observed time-series of SDOM concentrations,
the optimization had to adjust the term for the R-DOM
production (another export of SDOM, physical export
is mainly determined by physical forcing) according to
the modeled SDOM utilization and production rates.
This export represented a permanent loss of organic
matter and nutrient elements from the surface ocean,
and thus may impact the productivity of the whole
system.

In summary, this scenario indicates that higher
LDOM production could result in higher LDOM uti-
lization and therefore lower SDOM utilization by bac-
teria, so that the percentage of SDOM-supported bac-
terial production would be reduced. The uncertainty
related to partitioning between LDOM and SDOM
from phytoplankton and zooplankton (Step 1, Fig. 5)
can impact reliability of the model. However, the
microbial dynamics are not an isolated subsystem in
the model. From the discussion above, there were at
least 2 possible ways that the microbial dynamics can
link to the other processes in the model (and obser-
vations): bacterial growth efficiency and the loss of
SDOM.

Thus, the microbial dynamics are partly constrained
indirectly from other observations. Such considerations
suggest that our hypothesis is consistent with many
observations on different components of the ocean
ecosystem. But the possibility still exists that an alter-
nate solution not supporting our hypothesis can also be
generated, and still be consistent with the observa-
tions. Thus we conducted another numerical experi-
ment to test if the model can generate an alternate
solution while keeping similar goodness of fit to the
observations.

Numerical experiment: no bacterial SDOM 
utilization

Semilabile DOM does accumulate seasonally (Carl-
son 2002, Church et al. 2002). Such observations con-
firm that some phytoplankton and zooplankton do pro-
duce semilabile DOM. It remains unclear whether the
accumulated semilabile DOM is mostly utilized by
bacteria in the surface layer (e.g. Carlson et al. 2004),
or survives eventually to be physically exported during
deep-mixing events. In order to test the null hypothesis
of this study, i.e. semilabile DOM mostly accumulates
instead of being utilized, we conducted another
numerical experiment where bacteria did not utilize
any semilabile DOM. Accordingly, DOM production
would be partitioned more to LDOM. Because there
are no data to estimate the partitioning between

LDOM and SDOM production by phytoplankton and
zooplankton, the experiment also assigned all the
DOM production by protozoa and metazoa to LDOM,
which could roughly reduce the total biological semi-
labile DOC production by 50% (Fig. 3). The scheme of
semilabile DOC production from detritus dissolution
was not changed, as these fluxes were partly con-
strained by observations. Using data assimilation to
test the resulting model performance indicated that at
AS, the model became much worse at fitting semilabile
DOC and DON (DOP was not assimilated for AS) and
bacterial biomass (reflected in their increased cost),
while the fit to bacterial production remained un-
changed (Fig. 7). At EQP, the model performance fol-
lowing assimilation was more robust at fitting semil-
abile DOC (DON and DOP were not assimilated for
EQP), bacterial biomass and production (Fig. 7). At
HOT, the model performance deteriorated in fitting
semilabile DON and DOP, bacterial biomass and pro-
duction, while improving only slightly in fitting semil-
abile DOC (Fig. 7). The total cost increased by 43, 7
and 23% respectively for AS, EQP and HOT (Fig. 7).
Excluding cost components for SDOM and bacterial
biomass and production, the total costs from all other
components increased by 26, 19 and 17% respectively
for AS, EQP and HOT (Table 6). Thus the experiment
without SDOM utilization resulted in significantly
weaker fits to both microbial observations (bacteria
and SDOM) and other model components at AS and
HOT. Although the experiment resulted in a better fit
to bacteria and SDOM at EQP, this came at the
expense of weaker fits to other observations, and the
total cost still indicated overall that the experiment did
not improve the model performance.

This experiment of seeking an alternate solution to
our hypothesis resulted in a significantly worse fit to
the observations, not just to bacterial and DOM
dynamics but also to observations related to various
other properties of the ecosystem (e.g. nutrient con-
centrations, productivity). In other words, the current
model structure argues against this alternate solution
to our hypothesis.

CONCLUSIONS

This is one of the first studies to use a large number
of ecological and biogeochemical observations from
different aspects of the upper ocean ecosystem includ-
ing bacteria and DOM to test and constrain a marine
ecosystem model. The modeled heterotrophic micro-
bial dynamics were directly constrained by measured
DOM concentration and bacterial biomass and produc-
tion, and indirectly by other measured variables. The
modeled rates and variables were inside the range of
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current observations and are consistent with our cur-
rent understandings of marine microbiology. By assim-
ilating a wide range of ecosystem observations, we
demonstrate that the modeled microbial dynamics did
not contradict observations of the whole ecosystem.
Thus this modeling work bridges heterotrophic bacte-
ria to other parts of the upper ocean ecosystem, and
provides evidence for the consistency among discrete
components of ecosystems.

Our modeled results and the additional experiments
did not reject our hypothesis that semilabile DOM sup-
ports a significant amount of bacterial carbon demand
(17 to 40%, Fig. 4). This study was applied to 3 differ-
ent open ocean sites with different physical, biogeo-
chemical and ecological characteristics: the relatively
eutrophic Arabian Sea with seasonal monsoonal forc-

ing, regions of the mesotrophic Equatorial Pacific
where strong upwelling dominates upper ocean
dynamics, and the persistently stratified oligotrophic
Hawaii Ocean Time-series site. All of the sites showed
similar results regarding the role of semilabile DOM-
supported bacterial production. If our estimate that
SDOM-supported bacterial production accounted for
17 to 40% of the total bacterial requirement is correct,
SDOM is acting as a buffering pool and is likely stabi-
lizing time-space variations in bacterial production.
Such results would contribute to the observed varia-
tions in coupling between primary production and bac-
terial production in the open ocean.

To better support our hypothesis, the uncertainty
related to partitioning between LDOM and SDOM
production still needs to be clarified. We suggest fur-
ther study of the components and lability of DOM pro-
duced by phytoplankton and zooplankton remain key
issues for marine microbiology.
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AS EQP HOT

Standard model 79.9 85.4 44.2
No SDOM utilization 100.8 101.2 51.5
Change (%) +26 +19 +17

Table 6. Total optimized costs excluding the semilabile DOM
(SDOM) and bacterial biomass and production components,
comparing the standard model and the experiments without
SDOM utilization by bacteria. For abbreviations see Table 2
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