SHORT COMMUNICATION

Molecular cloning and characterization of a novel pathogen-induced trypsin-like protease in *Scylla paramamosain* (Estampador 1949)

Jian Ding, Hui Peng, Qian Cui & Ke-Jian Wang

State Key Laboratory of Marine Environmental Science, Xiamen, Fujian, China

Correspondence: K-J Wang, State Key Laboratory of Marine Environmental Science, Xiamen, Fujian, China. E-mail: wkjian@ xmu.edu.cn.

Serine protease (SP) is one of the oldest characterized and largest multigene proteolytic families, in which serine serves as the nucleophilic amino acid at the catalytic site. The active serine and two other residues (a histidine and an aspartate) are referred to as the 'catalytic triad' in the catalytic sites of many families of SP including trypsin (S1). alpha-lytic endopeptidases (S2), togavirus endopeptidase (S3), subtilisn (S8), prolyl oligopeptidase (S9) and serine carboxypeptidase (S10) families (Rawlings & Barrett 1993). In the trypsin subfamily, the three residues, serine, histidine and aspartate are, respectively, surrounded by 'GDSGGP', 'TAAHC' and 'DIMLL', which are all highly conserved motifs (Yousef, Elliott, Kopolovic, Serry & Diamandis 2004). Serine protease homologs (SPHs) are similar in amino acid sequence to S1 family SPs, but apparently lack amidase activity because the mutation of one or more of the catalytic residues (Ross, Jiang, Kanost & Wang 2003).

In invertebrates, arthropod SPs and SPHs are probably involved in various immune responses including haemolymph coagulation, melanotic encapsulation, induction of antimicrobial peptide synthesis and activation of cytokines by constituting a complex enzyme system in haemolymph (Ross *et al.* 2003; Piao, Kim, Kim, Park, Lee & Ha 2007). Melanization is an important immune response in many invertebrates and its (prephenoloxidase activating) cascade is regulated by SPs including the proPO-activating enzyme (PPAE), and SPHs (Cerenius, Lee & Söderhäll 2008). PPAE is the final link in the cascade leading to PO activation and keep it under tight control by another proteinase, their cofactors (non-catalytic serine proteinase homologues) and serine proteinase inhibitors. All those proteinases can properly be referred to as prophenoloxidase-activating factors (PPAF) (Buda & Shafer 2005). Many PPAE genes encoding either serine proteases (SPs) or serine protease homologs (SPHs) have been cloned and identified from a variety of arthropod species such as Holotrichia diomphalia (Kwon, Kim, Choi, Joo, Cho & Lee 2000; Kim, Baek, Lee, Park, Lee, Söderhäll & Lee 2002), Manduca sexta (Jiang, Wang & Kanost 1998; Yu, Jiang, Wang & Kanost 2003; Gupta, Wang & Jiang 2005), the crayfish Pacifastacus leniusculus (Wang, Jiang & Kanost 2001), the black tiger shrimp Penaeus monodon (Amparyup, Jitvaropas, Pulsook & Tassanakajon 2007; Charoensapsri, Amparyup, Hirono, Aoki & Tassanakajon 2011), Chinese mitten crab Eriocheir sinensis (Gai, Qiu, Wang, Song, Mu, Zhao, Zhang & Li 2009), the swimming crab Portunus trituberculatus (Cui, Liu, Wu, Luan, Wang, Li & Song 2010) and Fenneropenaeus indicus (Vaseeharan, Shanthi & Prabhu 2011). Most of the reported SPs have multi-domains such as H.diomphalia PPAF-1 and HP-14. The H.diomphalia PPAF-1 consists of clip and chymotrypsin-like domains (Lee, Kwon, Hyun, Choi, Kawabata, Iwanaga & Lee 1998; Piao et al. 2007), while HP-14 is an upstream proteinase from the moth Manduca sexta containing five low density lipoprotein receptor class A repeats, a Sushi domain, a unique Cys-rich region and a proteinase-catalytic domain (Ji, Wang, Guo, Hartson & Jiang 2004).

(a)																												
1	GAGACGT	TTGT	GGGA	CTC	GGT	GGT	GAG	CAG	ATT	ACA	ATC	ATG	TCG	CCG	TTA	TTG	CTG	CTA	CTC	GTG	GGT	GTC	GCC	GCC	CTC	ATC.	AAG	TCC
1												M	S	Р	L	L	L	L	L	V	G	V	Α	A	L	Ι	Κ	S
																	Put	ati	ve	sig	nal	pe	pti	de				
91	GCCCATO	GCACAG	GACT	GAC	TGT	GGC	CTC	CCC	TAT	ACG	TCT	CAA	GAC	ACC	AGA	GTT	CGT	CGC	CAG	GCG	GAA	CCC	TCA	CAA	ACA	AAC	GAA	TCG
18	A H	A Q	Т	D	С	G	L	Р	Y	Т	S	Q	D	Т	R	V	R	R	Q	A	Е	Р	S	Q	Т	Ν	E	S
181	GCGCCGT	CAACA	ACTO	ACT	GTT	CCA	GCA	CTG	TAC	TCG	AGC	TGC	GGT	GCC	GTG	GTC	ATC	AGT	GAT	TAC	TTC	CTG	CTG	ACG	GCG	GCG	TAC	TGC
48	A P	S T	L	Т	V	Р	А	L	Y	S	S	С	G	А	V	V	Ι	S	D	Y	F	L	L	Т	A	А	Y	С
271	GTGCTCA	AGCCT	IGAT	'AAA	CCG	GTG	AAC	TCT	GTG	CGC	CTG	GGT	GAC	CTG	GAC	CTG	GCC	AAG	GAA	GGG	GAG	GCC	AAC	AGC	CAG	CCT	GCT	GAC
78	V L	K P	D	Κ	Р	V	Ν	S	V	R	L	G	D	L	D	L	А	K	Е	G	Е	А	Ν	S	Q	Р	А	D
361	TACGATA	TCGAG	GCTC	ATC	ATC	ATC	CAT	CCC	AAC	TTT	ACA	GAT	GAC	CCA	CAA	ACA	GGG	ATC	CGC	TAC	AAT	GAT	CTG	GCA	CTG	CTC.	AAG	ACC
108	Y D	ΙE	L	Ι	Ι	Ι	Н	Р	N	F	Т	D	D	Р	Q	Т	G	Ι	R	Y	Ν	D	L	А	L	L	K	Т
451	AAAACTC	CAGATA	ACAG	TTT	AAT	GAG	GCT	GTG	TTC	CCC	TTC	TGC	ATA	TCT	CGC	ACC	AGC	CCT	GCC	GTC	AAC	ACC	ACT	GTC	ACT	GTC	TCA	GGC
138	КТ	Q I	Q	F	Ν	E	А	V	F	Р	F	С	Ι	S	R	Т	S	Р	А	V	Ν	Т	Т	V	Τ	V	S	G
541	TATGGAT	ATGTT	TAAT	GAT	TCC	CAT	CAG	CCA	ACA	CAT	CTG	CAA	GAG	GGA	GAG	CTC	CAA	GTG	ATG	TCC	CTG	GAT	GAC	TGT	GTT	GCA	GAG	TAT
168	Y G	Y V	Ν	D	S	Н	Q	Р	Т	Н	L	Q	Е	G	Е	L	Q	V	М	S	L	D	D	С	V	А	Е	Y
631	CGTGCTA	AGAAG	CAGA	TAT	AAC	CTG	CTG	CTG	AGT	GCC	TAC	CCT	GAC	CTC	CTG	CAA	GGA	TAT	GGT	GTT	GTG	TGT	GCA	GGT	CAC	CCC.	AAC	AGA
198	R A	K N	R	Y	Ν	L	L	L	S	А	Y	Р	D	L	L	Q	G	Y	G	V	V	С	Α	G	Н	Р	N	R
721	GGGGCTT	GTAAT	IGGT	GAC	GAG	GGT	GGA	CCA	GTG	GTA	CGG	AAG	GAC	GAG	TCT	GGC	CGC	CAG	TAC	CTG	GAG	GGC	ATC	ATC	AGC	TTC.	ACA	GCA
228	<u>G</u> A	C N	G	D	Ę	G	G	Р	V	V	R	К	D	Е	S	G	R	Q	Y	L	Е	G	Ι	Ι	S	F	Т	A
811	GACATCI	GTGGT	rccc	ACT	GTG	CTG	CCC.	ACC	ATC	TCC	ACT	AGT	GTG	GCT	GAC	AAT	TAT	GAT	TTT	ATT	ACT	GAG	ACA	ATA	AAA	TAT	GCC	TAA
258	DI	C G	Р	Т	V	L	Р	Т	Ι	S	Т	S	V	А	D	Ν	Y	D	F	Ι	Т	Е	Т	Ι	К	Y	А	*
901	ATTTAAA	TCTCA	ACTT	TTG	TCA	CTT	ACA	TGG	CTG	TCT	AGA	AGT	AAA	CTT	ACT	GGC	ATA	TTT	ACT	TGT	GAT	CCA	TTA	ATC	TGT	GTC	TTC	СТС
991	TCCTTCA	GTCG	ATAA	ACA	GCA	GAG	AAA	TTC	GCC	ATG	CAT	CTC	TTT	GCT	TGT	GTG	TTA	ATA	AGT	TTG	TTC	CCT	ATC	TTG	CTG	GCT	CAC	TGG
1081	TACTGCA	CTTAT	rggt	TTA	TCT	TCT	TTC	TTA	TCT	TTT	GAT	CCT	TTC	TTT	ACT	TTT	AAG	TGT	CTT	TTG	TAT	ACT	ACT	CTC	TCT	CTC	TCT	CTC
1171	тстстст	CTCTC	CTCT	CTC	TCT	СТС	ACA	TTA	ATG	TCT	AAT	GGT	GAC	ACC	AAG	TAC	ACT	GTA	TCA	TTT	TAT	AAC	TAA	TTA	TAC	TGA.	AAA	ATG
1261	ACAATAT	TATT	AATA	TAG	ATG	AAT	AAA	TAA	ACT	ACA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AA								
(b)																												
S.pan	amamosain				EAE	VOR		M	A	¥.	SS.	- is		-	CG	MM	SD	YFL	11/	AM	CVL	KPE	KP.		VN	SMR		38
D.erecta		FSN	KVY	NGN	DTA	I DE	FNV	MAI	LE	IVE	OKR.		GRR	Ĕ	CG	GSL	NN	RYV	ti)	ÂH	cvi	GAV	ETL	VGI	RLT	TMR		67
																		•										
S.par	amamosain			AK .	• • •	EC	EAN	soi	AD	YD	ELI	П	PN	FIL	DPC	TG	RY	P		KT	KTQ	I QF	NE/	ME	PF C	SR	1	03
D.erecta		L GE	YDT:	SKD	VDC	VDE	IC	jõp	LQ	LG	EK/	A V	PE	YDP	A	NK	R	HDI	ALI	RL	DRP	VLL	NE	Įģ	MC	LPL	1	35
S.paramamosain H.diomphalia D.erecta		TSP.		AV	NIT:	VT	SG	GY.		VNE	SHO	P	HLQ	EGE		MSI		<u>S</u> M	EY	AK	NRY	NLL	LSA	YPI		QGY	1	66
		vsri	RNA	NT	GEL	LV	SG	GR.		TTT	AR	ST	k	RLE	P	1 D	HDY	CAR	KF /	TR				. NI	H	ISS	i	92
							•																					
S.paramamosain H.diomphalia D.erecta		GNVG	CAG	HPN	RGA		IDEC	GP S D	MR	KD.	. ES	SGR		G	ISI	TA	DIO	GPT	VL	Щ	SIS	VAD	NY	DF	E		2	30
		QLC	VGG	FY	RDS	CDC	iDSC	GPI	MR	RG	, FI	DQA	WYQ	E <mark>G</mark> \	VSI	GN	R. C	GLE	GW	GV	YTR	VAL	YM	DW I	E		2	55

Figure 1 Nucleotide sequence (above) and deduced amino acid sequence of the ORF (below) of TLP cDNA (a), multiple alignment of the Tryp_SPc domains of TLP and other SPHs (b). Nucleotides are numbered from the first base at the 5'end. Amino acids are numbered from the initiating methionine. The predicted signal peptide and structural modules are underlined and marked. The polyadenylation signal AATAAA is boxed at the C-terminal part. The catalytic triads (Tyr⁷⁶, Asp¹³¹ and Glu²³⁴) at the active sites are indicated with " \blacktriangle " (or " \blacktriangledown ") and the amino acid residues forming the substrate specificity pocket are labelled with black squares. The asterisk (*) indicates the stop codon. The sequence is updated with full-length cDNA (GenBank accession number FJ774773.1). Proteins shown in the alignment are *Scylla paramamosain* (*S. paramamosain*), *Drosophila erecta* (*D. erecta*) and *Holotrichia diomphalia* (*H. diomphalia*).

The crab S. paramamosain is an important commercial crustacean species in China and Pacific areas. In the past decade, this economic species frequently suffered from outbreaks of diseases that had caused obvious decrease in production and severe economic losses: however, there were few effective ways of preventing these puzzles due to limited understanding of the innate immunity defence of S. paramamosain. In our previous study. a partial cDNA sequence (GenBank no. FJ774773. 1) of trypsin-like serine protease homologs gene was screened from the haemocyte subtractive suppression hybridization (SSH) library of S. paramamosain and its mRNA expression was strongly up-regulated with LPS-challenge (Chen, Liu, Bo, Ren & Wang 2010). In the study, the full-length cDNA sequence of the new trypsin-like protease, designated TLP, was completely determined by performing a 3' and 5' RACE with the gene-specific primers TLPR1 (5'-aacctgctgctgagtgcc tacc-3') and TLPF1(5'-ggtccaccctcgtcaccattac-3') respectively. The identified full-length cDNA of the TLP sequence comprises 1325 bp. The coding region of the TLP cDNA starts 39 bp downstream from the 5' end and is 861 bp long followed by 425 bp 3' untranslated region (UTR). The cDNA does not contain any Kozak consensus sequences or Kozak consensus-like sequences upstream of the initiation codon ATG. TLP has an 861 bp ORF encoding a predicted protein of 286 amino acid residues (Fig. 1a). The deduced protein includes a predicted signal peptide and one tryp-like domain. The predicted cutting site of the signal peptide is located between Ala²⁰ and Gln²¹. The putative whole protein molecular weight is approximately 31.2 kDa with an estimated isoelectric point of 4.58 (Fig. 1a). Sequence analysis revealed that the Tryp SPc domain lacks two catalytic residues, with the substitution of His and Ser in the active site triad to Tyr⁷⁶ and Glu²³⁴, which were conserved in the TAAHC and GDSGGP regions of serine proteases. Amino acid sequence database searching using the BlastP algorithm (http://www. ncbi.nlm.gov/BLAST/) revealed that the identified TLP Tryp_SPc domain that had highest identity to a Drosophila erecta SPHs (GG14174) was only 33% and second to Holotrichia diomphalia prophenoloxidaseactivating factor (CAC12665.1) with 31% identity (Fig. 1b). In addition, the result of nucleotide sequence search using ENA program (http://www. ebi.ac.uk/ena/) showed that TLP shared high similarity (over 80% identity) and a common replacement of His by Tyr⁷⁶ among several examined crab SPHs (*Carcinus maenas*, GenBank no. GT562940; *Callinectes sapidus*, GenBank no. CV527144; *Portunus trituberculatus*, GenBank no. GT562940). Those suggested that the TLP and other related SPHs from crabs belong to a new subfamily of the trypsin-like protease (Ross *et al.* 2003).

The trypsin-like serine protease (Tryp_SPc) familv is ubiquitous in eukarvotic animals and plays diverse roles in human processes of food digestion, haemostasis, immune defence response and the nervous system (Wang et al., 2008). Some Tryp_SPc proteases even contribute to the digestion of the blood meal in the mosquito (Wu et al., 2009). However, the function of trypsin-like serine protease homologs in crustacean is little known by far. To investigate its function, we firstly detect the expression patterns of TLP mRNA transcripts in various tissues and different development stages of S. paramamosain by semi-quantitative RT-PCR. The results indicated that the TLP gene expression level in haemocytes and gills was higher than that in heart, hepatopancreas, stomach and nerve. Meanwhile, the mRNA of TLP was detected at all developmental stages of S. paramamosain and a higher level of expression was observed in embryo developmental stages (I, III and V), zoea (I), juvenile and adult crab, but lower in embryo (II) and megalops (Fig. 2). Previous studies reported that arthropod SPs and SPHs were predominantly expressed in haemocytes (Lin, Hu, Ho & Song 2006; Vaseeharan, Lin, Ko & Chen 2006; Liu,

Figure 2 Tissue distribution and developmental expression profile of TLP mRNA in *S. paramamosain.* (a) Tissue distribution analyses by performing semiquantitative RT-PCR in the tested tissues. Lane 1: eyestalk, 2: heart, 3: stomach, 4: gills, 5: haemocyte, 6: hepatopancreas, 7: nerve, 8: midgut gland, 9: body wall. (b) Developmental expression profile of TLP mRNA in various stages using semi-quantitative RT-PCR analysis. Lane 1: embryo I, 2: embryo II, 3: embryo III, 4: embryo V, 5: zoea I, 6: megalops, 7: haemocyte from juvenile $(10 \pm 2 \text{ g})$, 8: haemocyte from juvenile $(35 \pm 5 \text{ g})$, 9: haemocytes from adult crab. The gene of GAPDH is used as an internal control.

Chen, Zhang & Wang 2010; Charoensapsri et al. 2011; Vaseeharan et al. 2011), and also in gills (Sriphaijit, Flegel & Senapin 2007; Liu et al. 2010), by which it was thought their roles in host immune defence. Similarly in this study, the mRNA transcripts of TLP were demonstrated in most tested tissues and higher expressed in the haemocytes and gills than that in heart, hepatopancreas, stomach and nerve. Therefore, it was supposed that the TLP might act as an important protease with potential immune function as other known SPHs. Besides, the high level of TLP mRNA expression was observed in eyestalks, suggesting that these proteases might be involved in activity related to other unknown physiological process similar to the Sp-SPH from the same species, or like the PtSPH from the swimming crab Portunus trituberculatus (Cui et al. 2010; Liu et al. 2010). The distinct expression pattern was also reported in the studies of EsSPH and EscSP on which the mRNA transcripts of EsSPH were highly increased in the hepatopancreas, whereas EscSP gene was highest expressed in the muscle of Chinese mitten crab E. sinesis (Gai et al. 2009; Qin, Chen, Qin, Zhao, Zhang, Wu & Li 2010). The discrepancy in gene expression pattern of SPHs in tissues implies that the expression of these proteases is tissueand species-specific in crustaceans. Moreover, the results on the expression of TLP in different developmental stages revealed that the TLP gene could be not only expressed early in embryos I but also in the haemocytes of juvenile crabs, suggesting that this protease might exert immune reaction throughout the development stage of crabs.

The presumption on TLP involving immune roles was further evidenced by the challenge experiments in the study. The mRNA expression of TLP after Vibrio alginolyticus challenge was evaluated using quantitative real-time PCR. A partial fragment of GAPDH gene was amplified via primers GF (5'-ctcca ctggtgccgctaaggctgta-3') and GR (5'-caagtcaggtcaa ccacggacacat-3') and served as an internal control for normalization. The TLP expression was remarkably up-regulated at 3, 6 and 12 h in haemocytes, and reached a maximum 30-fold increase over control values at 6 h after V.alginolyticus challenge. In addition, its mRNA transcripts were also significantly increased at 6 h in gills, and at 3 h in hepatopancreas respectively (Fig. 3). It is reported that haemocytes and other cell types from the gills and hepatopancreas were involved in cellular and humoral defences in crustaceans (Rowley & Powell 2007). These data led us to hypothesize that the induction of TLP gene might be served as an acute-phase defence molecule against pathogen infection in *S. paramamosain*.

Conclusions

In conclusion, a new trypsin-like serine protease named TLP was identified in *S. paramamosain*. The full-length cDNA sequence and the gene expression pattern of TLP were determined. Its mRNA transcripts were significantly increased with *V. alginolyticus* challenge, suggesting its immune response against bacterial infection. However, this study is an initial step to understand the function of TLP in immune system of *S. paramamosain*.

Acknowledgments

This study was supported by the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT0941), a grant (201105027) from the Public Science and Technology Research Funds Projects of Ocean, State Oceanic Administration of the People's Republic of China and the Minjiang Scholar Program to K-J. Wang (2009).

References

- Amparyup P., Jitvaropas R., Pulsook N. & Tassanakajon A. (2007) Molecular cloning, characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp *Penaeus monodon*. *Fish and Shellfish Immunology* **22**, 535–546.
- Buda E.S. & Shafer T.H. (2005) Expression of a serine proteinase homolog prophenoloxidase-activating factor from the blue crab, *Callinectes sapidus*. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 140, 521–531.
- Cerenius L., Lee B.L. & Söderhäll K. (2008) The proPOsystem: pros and cons for its role in invertebrate immunity. *Trends in Immunology* 29, 263–271.
- Charoensapsri W., Amparyup P., Hirono I., Aoki T. & Tassanakajon A. (2011) PmPPAE2, a new class of crustacean prophenoloxidase (proPO)-activating enzyme and its role in PO activation. *Developmental and Comparative Immunology* **35**, 115–124.
- Chen F.Y., Liu H.P., Bo J., Ren H.L. & Wang K.J. (2010) Identification of genes differentially expressed in hemocytes of *Scylla paramamosain* in response to lipopolysaccharide. *Fish and Shellfish Immunology* **28**, 167–177.
- Cui Z., Liu Y., Wu D., Luan W., Wang S., Li Q. & Song C. (2010) Molecular cloning and characterization of a

serine proteinase homolog prophenoloxidase-activating factor in the swimming crab *Portunus trituberculatus*. *Fish and Shellfish Immunology* **29**, 679–686.

- Gai Y., Qiu L., Wang L., Song L., Mu C., Zhao J., Zhang Y. & Li L. (2009) A clip domain serine protease (cSP) from the Chinese mitten crab *Eriocheir sinensis*: cDNA characterization and mRNA expression. *Fish and Shell-fish Immunology* **27**, 670–677.
- Gupta S., Wang Y. & Jiang H. (2005) *Manduca sexta* prophenoloxidase (proPO) activation requires proPOactivating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously. *Insect Biochemistry and Molecular Biology* **35**, 241–248.
- Ji C., Wang Y., Guo X., Hartson S. & Jiang H. (2004) A pattern recognition serine proteinase triggers the prophenoloxidase activation cascade in the tobacco hornworm, *Manduca sexta. Journal of Biological Chemistry* 279, 34101–34106.
- Jiang H., Wang Y. & Kanost M.R. (1998) Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proceedings of the National Academy of Sciences 95, 12220–12225.
- Kim M.S., Baek M.J., Lee M.H., Park J.W., Lee S.Y., Söderhäll K. & Lee B.L. (2002) A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in *Holotrichia diomphalia* larvae. *Journal of Biological Chemistry* 277, 39999– 40004.
- Kwon T.H., Kim M.S., Choi H.W., Joo C.H., Cho M.Y. & Lee B.L. (2000) A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, *Holotrichia diomphalia* larvae. *European Journal of Biochemistry* 267, 6188–6196.
- Lee S.Y., Kwon T.H., Hyun J.H., Choi J.S., Kawabata S.I., Iwanaga S. & Lee B.L. (1998) In vitro activation of pro-phenol-oxidase by two kinds of pro-phenol-oxidaseactivating factors isolated from hemolymph of coleopteran, *Holotrichia diomphalia* larvae. *European Journal of Biochemistry* 254, 50–57.
- Lin C.Y., Hu K.Y., Ho S.H. & Song Y.L. (2006) Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule. *Developmental and Comparative Immunology* **30**, 1132– 1144.
- Liu H., Chen R., Zhang M. & Wang K. (2010) Isolation, gene cloning and expression profile of a pathogen recognition protein: a serine proteinase homolog (Sp-SPH) involved in the antibacterial response in the crab Scylla paramamosain. Developmental and Comparative Immunology 34, 741–748.
- Piao S., Kim S., Kim J.H., Park J.W., Lee B.L. & Ha N.C. (2007) Crystal structure of the serine protease domain of prophenoloxidase activating factor-I. *Journal of Biological Chemistry* 282, 10783–10791.

- Qin C., Chen L., Qin J.G., Zhao D., Zhang H., Wu P. & Li E. (2010) Characterization of a serine proteinase homologous (SPH) in Chinese mitten crab *Eriocheir sinensis*. *Developmental and Comparative Immunology* **34**, 14–18.
- Rawlings N.D. & Barrett A.J. (1993) Evolutionary families of peptidases. *The Biochemical Journal* 290, 205.
- Ross J., Jiang H., Kanost M.R. & Wang Y. (2003) Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. *Gene* **304**, 117–131.
- Rowley A.F. & Powell A. (2007) Invertebrate Immune Systems–Specific, Quasi-Specific, or Nonspecific? *The Journal of Immunology* **179**, 7209.
- Sriphaijit T., Flegel T.W. & Senapin S. (2007) Characterization of a shrimp serine protease homolog, a binding protein of yellow head virus. *Developmental and Comparative Immunology* **31**, 1145–1158.
- Vaseeharan B., Lin Y.C., Ko C.F. & Chen J.C. (2006) Cloning and characterisation of a serine proteinase from the haemocytes of mud crab *Scylla serrata*. *Fish and Shellfish Immunology* **21**, 20–31.
- Vaseeharan B., Shanthi S. & Prabhu N.M. (2011) A novel clip domain serine proteinase (SPs) gene from the haemocytes of Indian white shrimp *Fenneropenaeus indicus*: molecular cloning, characterization and expression analysis. *Fish and Shellfish Immunology* **30**, 980–985.
- Wang Y., Jiang H. & Kanost M.R. (2001) Expression and purification of *Manduca sexta* prophenoloxidaseactivating proteinase precursor (proPAP) from baculovirus-infected insect cells. *Protein Expression and Purification* 23, 328–337.
- Wang Y, Luo W & Reiser G. (2008) Trypsin and trypsinlike proteases in the brain: Proteolysis and cellular functions. *Cellular and Molecular Life Sciences* 65, 237– 252.
- Wu D.D., Wang G.D., Irwin DM & Zhang Y.P. (2009) A profound role for the expansion of trypsin-like serine protease family in the evolution of hematophagy in Mosquito. *Molecular Biology and Evolution*, **26**, 2333– 2341.
- Yousef GM, Elliott MB, Kopolovic AD, Serry E & Diamandis EP. (2004) Sequence and evolutionary analysis of the human trypsin subfamily of serine peptidases. *Biochimica et Biophysica Acta* **1698**, 77–86.
- Yu X.Q., Jiang H., Wang Y. & Kanost M.R. (2003) Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, *Manduca sexta. Insect Biochemistry and Molecular Biol*ogy **33**, 197–208.

Keywords: *Scylla paramamosain*, pathogeninduced, trypsin-like protease, defence molecule