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Abstract The bulk uncertainty in the gridded sea surface pCO2 data is crucial in assessing the reliability
of the CO2 flux estimated from measurements of air-sea pCO2 difference, because atmospheric pCO2 are rel-
atively homogeneous and well defined. The bulk uncertainty results from three different sources: analytical
error (Em), spatial variance (r2

s ), and the bias from undersampling (r2
u). Common uncertainty quantification

by standard deviation may mix up the different sources of uncertainty. We have established a simple proce-
dure to determine these three sources of uncertainty using remote sensing-derived and field-measured
pCO2 data. Em is constrained by the analytical method and data reduction procedures. r2

s is derived from
the remotely sensed pCO2 field. r2

u is determined by spatial variance and the effective number of observa-
tions, considering, for the first time, the geometric bias introduced by pCO2 sampling. This approach is
applied to 1� 3 1� gridded pCO2 data collected from the East China Sea. We demonstrate that the spatial
distribution of these biases is uneven and that none of them follow the same spatial trend as the standard
deviation. r2

s contributes the most to the uncertainty in gridded pCO2 data over those grid boxes with good
sampling coverage, while r2

u dominates the total uncertainty in the grid boxes with poor sampling cover-
age. Application of this procedure to other parts of the global ocean will help to better define the inherent
spatial variability of the pCO2 field and thus better interpolate and/or extrapolate pCO2 data, and eventually
better constrain air-sea CO2 fluxes.

1. Introduction

Closing the carbon budget and reducing the uncertainty in estimations of air-sea CO2 fluxes, to thereby bet-
ter constrain the temporal-spatial variability of the ocean carbon sink and ultimately better predict climate
system changes, have been the goals of many international efforts [e.g., Le Qu�er�e et al., 2009; Wanninkhof
et al., 2013]. One of the most promising methods in estimating air-sea CO2 fluxes is based on measurements
of air-sea pCO2 (partial pressure of carbon dioxide) difference, or DpCO2 [Takahashi et al., 2009, and referen-
ces therein], where pCO2 in the ocean surface water is the primary determinant, because pCO2 in the atmos-
phere is relatively homogeneous and well defined.

After Tan et al. [1990], the first compilation of sea surface pCO2 data measured since 1972, tremendous
efforts have been devoted to acquiring surface ocean pCO2 data, primarily through underway measure-
ments around the world’s oceans [e.g., Bakker et al., 2013; Pfeil et al., 2013; Sabine et al., 2013; Wanninkhof
et al., 2013]. When estimating the air-sea CO2 fluxes, observational CO2 data are typically aggregated onto
grid boxes to establish gridded data [e.g., Takahashi et al., 1997, 2002, 2009]. Essentially, three error sources
with different implications may contribute to uncertainty in gridded pCO2 data. One is the analytical error in
the pCO2 determination and the associated environmental parameters used in deriving pCO2. Second, the
ocean surface pCO2 may be spatially inhomogeneous, and thus may have nonuniform variances within an
investigation area, especially in the grid boxes over coastal regions and other ocean boundaries or fronts
[Sweeney et al., 2002]. Any interpolation within a particular spatial domain/grid box can thus be subject to
error. Finally, errors can also result from extrapolation to areas without any actual measurements or under-
sampling, since sampling sites may be unevenly distributed over the entire investigation area, and the scar-
city of sampling is common. In the Takahashi climatology, these error terms have been carefully examined
[Takahashi et al., 2009]. They estimated that one standard deviation around a mean DpCO2 for their 4� 3 5�
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boxes was about 610 matm, on
average, across global oceans.
Based on the total number of
measurements across the num-
ber of grid boxes, the average
errors for monthly mean values
of seawater pCO2 were esti-
mated to be 60.8 matm. Addi-
tionally, they evaluated the
systematic biases in surface
water pCO2 due to undersam-
pling, and their interpolation
method was based on a two-
dimensional diffusion-advec-
tion transport equation [Taka-
hashi et al., 1995]. A composite
of the biases was evaluated by
comparing the SST in the study
and the climatological SST

field. However, it remains challenging to differentiate the three identified sources of error in any spatial
horizon. It is even more difficult to quantify the error sources at given temporal and spatial scales with
which the observational data are associated. In some other studies, particularly over the coastal ocean,
because of insufficient data coverage, data on CO2 fluxes are often reported with an uncertainty of the aver-
age pCO2 in each grid box quantified by the standard deviation of all the data in the box [e.g., Zhai et al.,
2013]. This simplified uncertainty quantification may mix up the different sources of uncertainty and, more-
over, lend difficulty to data interpolation/extrapolation beyond the sampling sites, or to optimizing strat-
egies for designing field observations that reduce the uncertainty. This study is a step forward from the
previous simplified uncertainty quantification and explores the feasibility of estimating the contribution of
each source of uncertainty in gridded pCO2 data and hence helps assess the reliability of the CO2 fluxes.
Our aim is to explore three sources of uncertainty in gridded pCO2 data: (i) analytical error (Em), determined
by the analytical method and data reduction procedures, (ii) spatial variance (r2

s ), which represents charac-
teristics of pCO2 spatial variations in a given region, and (iii) the bias resulting from undersampling (r2

u),
determined by spatial variations and the effective number of sampling observations. Using the gridded
pCO2 measurement data over the East China Sea, we attempt to demonstrate an approach to quantitatively
differentiate the three sources of uncertainty. Remote sensing pCO2 data are used to calculate the spatial
variability and the correlation among observations in individual grid boxes. Given the rapidly growing appli-
cations of remote sensing techniques in mapping pCO2 and constraining pCO2 spatial variability [e.g., Ste-
phens et al., 1995; Nelson et al., 2001; Ono et al., 2004; Sarma et al., 2006; Zhu et al., 2009; Hales et al., 2012; Jo
et al., 2012], our approach to estimating uncertainty in gridded pCO2 data should have numerous
applications.

2. Method to Estimate Sources of Error in Gridded pCO2 Data

For a given pCO2 data set, the three sources of error in its gridded pCO2 can be estimated with aid of a con-
current high-spatial-resolution satellite-derived pCO2 data set for the same region. Our procedure for esti-
mating the three sources of uncertainty is summarized in a simplified way in the flowchart in Figure 1. First,
the analytical error, Em, is assessed by aggregating all the errors introduced in the measurement and data
reduction of pCO2. Next is the spatial variance, r2

s , which is determined using pCO2 data retrieved from sat-
ellite remote sensing that has relatively high spatial coverage. Last is the bias resulting from undersampling,
r2

u, determined by the spatial variance, a correlation factor, and the effective number of observational sta-
tions in a desired grid box. Here, the correlation factor is estimated by a least squares regression using the
satellite remote sensing pCO2 data. The effective number of observations reflects the spatial evenness of
the sampling and is estimated by a subgridding technique. The calculations to determine r2

u are similar to
those used in calculating the sampling error variance for surface air temperature data [Shen et al., 2007, 2012],
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Figure 1. Flowchart of the uncertainty estimate for pCO2 data. The flow direction is down-
ward if not indicated by an arrow. RS-pCO2 represents remote sensing-derived pCO2 data,
and m-pCO2 represents field-measured pCO2 data. Em is the analytical error, r2

s is the spatial
variance, and r2

u represents the undersampling variance. See the text for details.
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but differ in four aspects: (a) instead of one data set, we combine two independent pCO2 data sets, one
retrieved from high-spatial-resolution satellite data that enable better constraints of the spatial variations,
and the other from in situ measurements, to describe r2

u; (b) we consider the spatial variation, not the tem-
poral variation; (c) smoothing techniques are not applied, since spatial variations in pCO2 may be great,
especially in coastal oceans; and (d) the effective number, not the actual number, of observations is applied
to reflect the uneven distribution of observations.

Described in detail, the following steps are taken to estimate the three sources of error in gridded in situ
pCO2.

2.1. Calculation of the Analytical Error (Em)
The analytical error calculation follows the error propagation technique of Taylor [1982, 1997], which has
been used in many studies [e.g., Go~ni et al., 1998; Bhattacharya et al., 2002; Lee et al., 2005; Wang et al.,
2010; Han et al., 2012]. Briefly, the analytical error for gridded pCO2 data is estimated by transferring the
analytical errors of all the in situ pCO2 data in the grid box using the error propagation.

2.2. Calculation of the Spatial Variance (r2
s )

In a grid box with pCO2 data retrieved from satellite data, the spatial variance is estimated by

r2
s 5

1
N

XN

i51

Pi2P
� �2

; (1)

where N is the number of satellite pCO2 data in the grid box, Pi is the ith pCO2, and P is the spatial simple
average in the grid box. The minimum number for N is 4, to make the statistics meaningful and to make it
consistent with the requirement in estimating the correlation factor in the calculation of r2

u (see below).

2.3. Estimation of the Undersampling Variance (r2
u)

The uncertainty is given as

r2
u5 a 3 rs

2
� �

= f 3 Kð Þ; (2)

where a is a correlation factor, indicating the correlation among true pCO2 in a desired grid box and better
represented by the correlation among high-spatial-resolution satellite pCO2 data, determined by a least
squares regression. K is the number of underway pCO2 observations in the grid box, and f is the fraction of
subgrids with underway pCO2 observations in the grid box. Here, f 3 K can be interpreted as the effective
number of underway pCO2 observations. Since the errors are estimated only for the grid boxes with the
observed data, f 3 K is thus never equal to zero. This uncertainty reflects the geometric bias introduced by
pCO2 sampling in a grid box. For the same number of samples, the one with the widest coverage has the
smallest errors while the samples from the same location are redundant and would result in large errors.
This is an improvement on the method of Shen et al. [2007, 2012], which did not consider this geometric
distribution factor.

2.3.1. Estimation of the Correlation Factor (a)
The correlation factor is

a511
1
N

XN

i;j51
i 6¼j

�
Pi2P
rs

Pj2P
rs

�
; (3)

where hi represents the ensemble mean, and i and j are the observation number. rs is determined in equa-
tion (1). This formula shows that the correlation factor is determined by an average correlation between
each pair of in situ observation points. Because the true pCO2 values are unknown, the correlation factor
cannot be directly calculated from equation (3) and is estimated by regression using high-resolution satel-
lite-derived pCO2 data, as follows. For a grid box with N observations (N� 4), the pCO2 data of the N obser-
vations are taken as a statistical population. The population mean of the pCO2 data in the grid box is
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PN5
1
N

XN

i51

Pi: (4)

We randomly pick n observations from the population 5000 times (1� n<N). The sample mean of the n
observations for each pick is

Pn5
1
n

Xn

i51

Pn;i: (5)

The mean square difference between the population mean and the sample mean is

D2
n5

1
5000

X5000

n51

PN2Pn
� �2

: (6)

The random sampling for 5000 times of pCO2 data may have many repeated samples for a limited
number of sampling observations in a grid box, so equation (6) represents well the exhaustive sample
mean. Repeating this random picking for n 5 1, 2, 3, . . ., N 2 1 and two (N 2 1)-dimension vectors can
be set up,

X5
1
n

� �
; n51; 2; 3; . . . ; N21ð Þ; (7)

and

Y5
D2

n

r2
s

� �
; n51; 2; 3; . . . ; N21ð Þ: (8)

The correlation factor a is estimated by the least squares regression between X and Y.

2.3.2. Estimation of f
The purpose of introducing f in the calculation is to quantitatively reflect the uneven distribution of
in situ pCO2 observations, so the greater the number of subgrids, the better f would represent the
real unevenness. However, due to the calculation load imposed by large numbers of subgrids and
limitation by the resolution of satellite data, the size of the subgrid can be compromised to be
somewhat greater than the resolution of the satellite-derived pCO2 data. Divide the grid box into a
number of equal-sized subgrids. The fraction of subgrids with underway pCO2 observations in the
grid box is

f 5
XM

i51

Li=M; (9)

where M is the number of equal-sized subgrids in the grid box, and for the subgrid i,

L5
1 if there is at least one pCO2 observation in the sub-grid

0 if there is no pCO2 observation in the sub-grid
:

(

2.3.3. Estimation of r2
u

For a grid box having at least four satellite pCO2 data points, the correlation factor and spatial variance are
calculated. If there are fewer than four satellite pCO2 data points for a grid box, the correlation factor and
spatial variance are not calculated. If there are pCO2 in situ measurement data in the grid box, that is, K> 0,
then r2

u is calculated based on equation (2). If there are no pCO2 in situ measurement data in the grid box,
then r2

u is not calculated.

2.4. The Total Uncertainty rT

Integrating the three errors (i.e., the analytical error (Em), the spatial variance (r2
s ), and the undersampling

variance (r2
u)) and assuming their independence, the total uncertainty (rT) is

rT 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

m1r2
s 1r2

u

q
: (10)

Note that r2
u is not really independent of r2

s , as shown in equation (2); however, the introduction of the total
uncertainty in equation (10) is helpful in evaluating the relative significance of these sources of error.
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The estimation of the spatial variance, the correlation factor, and subsequently, the undersampling variance
requires a concurrent high-spatial-resolution pCO2 field. In the present study, we used satellite remote
sensing-derived pCO2 data generated from a parallel study (Y. Bai et al., manuscript in preparation, 2014).
We must point out that this satellite-derived pCO2 field was used to define the spatial variance and the cor-
relation factor, but not for the purpose of defining their absolute values. Optionally, sea surface temperature
that is more readily available from field measurements or remote sensing techniques could also serve this
specific purpose, when a proper correlation with pCO2 field is achievable.

In summary, the analytical error is estimated using the in situ pCO2 data by error propagation. The spatial
variance and the correlation factor are quantified using a high-spatial-resolution pCO2 data set. The under-
sampling variance is subsequently determined by the spatial variance, the correlation factor, and an effec-
tive number of in situ pCO2 data in the grid (Figure 1). The choice of grid box size is case dependent. One
rule is to follow the grid size that is used to average pCO2 data for air-sea flux estimations.

3. Application of the Error Quantification to the East China Sea

The procedure to differentiate the sources of uncertainty was applied to the underway surface pCO2 data
from the East China Sea collected in August 2009. In the summer, the East China Sea is mainly influenced
by four water masses: the relatively low-temperature Yellow Sea water in the north; the Yangtze River
plume water; and in the mid-shelf, the Taiwan Warm Current from the south, which often combines with a
branch of the Kuroshio current in the outer shelf and at the shelf break, characterized by high temperature
and salinity [Su and Pan, 1989]. The way to determine underway sea surface pCO2 is referred to Zhai and
Dai [2009] and the overall uncertainty in the pCO2 measurement and data reduction is less than 1%. Figure
2a shows that the underway sampling locations are not evenly distributed in the area, with high-spatial-
resolution data along several transects. The spatial range of the underway pCO2 observation is (25�N–33�N,
120�E–127.3�E). Figure 2b shows the distribution of the satellite remote sensing-derived pCO2, using the 16
day composite data in August 2009 reported in Bai et al. (manuscript in preparation, 2014). Briefly, these sat-
ellite pCO2 data were estimated using a semianalytical algorithm, which analytically expressed pCO2 varia-
tions as the sum of individual components contributed by major controlling factors such as temperature,
mixing, and biology. These factors were based on satellite products of sea surface temperature, chlorophyll
a, and satellite-derived salinity using the salinity algorithm developed for the East China Sea by Bai et al.
[2013]. On average, these data have much higher spatial resolution, 50 3 50, than the underway pCO2 data.
The selected grid size was 1� 3 1�, with 100 subgrids, as limited by the resolution of the satellite pCO2 in
each grid box, to have a good spatial resolution of the sampling coverage. Although this remote sensing-
based data set primarily served as a constraint on the spatial variance, the data retrieved have been well
validated using in situ measurements (Bai et al., manuscript in preparation, 2014).
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Figure 2. Distributions of sea surface pCO2 in the East China Sea in August 2009; (a) field-measured pCO2, and (b) remote sensing-derived
sea surface pCO2 plotted using data from Bai et al. (manuscript in preparation, 2014).
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After gridding, starting from the point of (120�E, 25�N), with a gridding step of 1� northward and eastward,
the average surface pCO2 in the grids in the East China Sea in August 2009 ranges from 185 to 410 matm,
while the median in the grids is 149–413 matm (Figure 3). The latitudinal trends of the average and the
median pCO2 are similar—relatively low near the coast, and high in regions affected by warm currents. A
local maximum is present for the average pCO2 off the Yangtze River estuary, as demonstrated previously
by Zhai and Dai [2009].

The analytical error for the underway pCO2 data is estimated to be less than 1% [Zhai and Dai, 2009; Zhai
et al., 2013]. After gridding, the analytical error in each grid varies from 2.9 to 5.8 matm (Figure 4a). The ana-
lytical error for each grid is determined by the maximum pCO2 in the grid. The analytical errors for most
observations are approximately 4 matm. The spatial distribution of the analytical error shows no similarity to
that of the standard deviation, which, in general, is relatively high near the coast and much smaller on the
outer shelf (Figures 4a and 4f).

As for the spatial variance, the grid boxes closest to the coast have the maximum along latitudes, except for
the grid boxes along 25.5�N, where the grid closest to Taiwan shows the maximum spatial variance (Figure
4b). rs decreases with distance offshore, with the rate of decrease much higher on the inner shelf than on
the outer shelf of the East China Sea. The latitudinal trend is similar to the general trend of the standard
deviation (Figures 4b and 4f). On the outer shelf from north to south, the spatial variance in the grid boxes
along 32.5�N and 31.5�N, which are affected by the Yellow Sea water, is at least twice as high as that of
other grid boxes, indicating physical controls on the pCO2 variation. The longitudinal distribution of the
standard deviation, however, shows no trend. The greatest rs on the East China Sea shelf, 77.8 matm,
appears outside the Yangtze River estuary, and the lowest rs, 3.2 matm, is on the outer shelf of the East
China Sea.

The undersampling variance is also the highest off the Yangtze River estuary, with the range of ru from 0.9
to 45.5 matm (Figure 4c). The maximum is determined by both the maximum spatial variance (rs 5 77.8
matm), a relatively small number of underway observations (K 5 59), and relatively poor sampling coverage
in the grid. At the same latitude, the grid on its right has rs of 62.1 matm, but due to a much greater number
of observations (K 5 511) in this grid, its ru is about one tenth of the maximum. The second largest under-
sampling variance appears in the grid centered at (26.5�N, 124.5�E), in which grid there are only three
observations. The undersampling variance is affected by both the spatial variation and the effective number
of observations; thus, it shows no latitudinal trend as the spatial variance does. The undersampling variance
and the standard deviation do not distribute in a similar way (Figures 4c and 4f). In the grid boxes with simi-
lar spatial variances, their undersampling variances reflect the relative magnitude of the inverse of the
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Figure 3. The average and median partial pressure of CO2 in 1� 3 1� grids in the East China Sea in August 2009, collected by field meas-
urements: (a) the average pCO2 and (b) the median pCO2. The grid starts from (25�E, 120�N) and the filled circles representing each grid
are located at the center of each grid. Note that the value of each parameter is shown by the color bar, the relative magnitude of which is
illustrated by the size of the circle.
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effective number of sampling observations in each grid, since the correlation factor for all the grids is
approximately 1 (Figure 4d).

The total uncertainty derived from the three sources of uncertainty is the highest off the Yangtze River estu-
ary. The total uncertainty apparently differs greatly from the standard deviation of the gridded underway
pCO2 data, especially near the coast, where greater spatial variance is present (Figures 4b, 4e, and 4f). For
example, in the grid box centered at (29.5�N, 122.5�E), the biggest standard deviation, 124.0 matm, appears,

  26oN 

  28oN 

  30oN 

  32oN 

  24o

  34oN 

N 
 118oE 

b) σ 

f) SD

c) σ

a) E

d) α

e) σ

s

u

T

0.98

0.99

1

1.01

1.02

1.03

3

3.5

4

4.5

5

5.5

m

 120oE  122oE  124oE  126oE  128oE  130oE 

Yangtze River

Yangtze River

10

20

30

40

50

60

70
Yangtze River

5

10

15

20

25

30

35

40

45

Yangtze River

 120oE  122oE  124oE  126oE  128oE  130oE 

N 

  26oN 

  28oN 

  30oN 

  32oN 

o

  34oN 

20

40

60

80

100

120

20

40

60

80

100

120

  24 N 

  26oN 

  28oN 

  30oN 

  32oN 

o

  34oN 

Yangtze River
Yangtze River

  24
 118oE  120oE  122oE  124oE  126oE  128oE  130oE  120oE  122oE  124oE  126oE  128oE  130oE 

 118oE  120oE  122oE  124oE  126oE  128oE  130oE  120oE  122oE  124oE  126oE  128oE  130oE 

La
tit

ud
e

Longitude Longitude

La
tit

ud
e

La
tit

ud
e

μatm μatm

μatm

μatm μatm

Figure 4. The three sources of uncertainty (i.e., analytical error, Em, spatial variance of pCO2, r2
s , and the bias from undersampling, r2

u), the
correlation factor (a), the total uncertainty (rT), and the standard deviation (SD) calculated for the 1� 3 1� gridded underway pCO2 data in
the East China Sea collected in August 2009; (a) Em, (b) rs, (c) ru, (d) a, (e) rT, and (f) SD. The filled circles representing each grid are located
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while rT is 47.9 matm. In the grid centered at (25.5�N, 121.5�E), rT is 30.2 matm, while the standard deviation
is 6.4 matm. This difference of the standard deviation from the total uncertainty is mainly caused by the
uneven spatial coverage of the underway data.

For the three sources of uncertainty in the gridded pCO2 data, the spatial variance is dominant in the grid
boxes with relatively good sampling coverage, equivalent to more than 90% of the total uncertainty
(Figure 4). For the grid boxes with relatively poor sampling coverage, the spatial variance is equivalent to as
low as 16.9% of the total uncertainty, which appears in the grid centered at (26.5�N, 124.5�E), where the
undersampling variance dominates the total uncertainty. The analytical error is relatively uniform for the
gridded underway surface pCO2 data collected in August 2009, while the range of the spatial variance is the
greatest in the three uncertainties. None of the three uncertainties show a similar spatial pattern to that of
the standard deviation. In further investigations, we recommend increasing sampling coverage in the grid
boxes with relatively large undersampling variances and/or spatial variances.

4. Conclusions

Our approach successfully differentiates and quantifies the three sources of uncertainty in gridded surface
pCO2 data: analytical error, spatial variance, and undersampling variance. Application of this approach to
the underway surface pCO2 data collected from the East China Sea demonstrates that none of the sources
of uncertainty follow the same spatial trend as the standard deviation and that the total uncertainty derived
from the three sources is controlled by the spatial variance in grids with relatively good sampling coverage.
The undersampling variance contributes the most to the total uncertainty in the grid boxes with poor sam-
pling coverage. The quantification of the sources of uncertainty in gridded pCO2 data differentiates the
inherent spatial variability of the pCO2 field from real errors associated with the analytical methods and
induced from the undersampling. Such differentiation would thus ease the difficulties in data interpolation/
extrapolation beyond the sampling sites, and in optimizing strategies for designing field observations to
reduce the uncertainty, and eventually better constrain air-sea CO2 fluxes.
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