光合作用参数是浮游植物的重要生理学指标,一般通过P-E实验(C14示踪)测量得到。最大光利用(固碳)效率Φm和光饱和固碳速率Pm的函数,表征了浮游植物的光合作用能力,理论上受营养状态、温度等因素的影响。分析光合作用参数的特征和分布规律,有助于更好地了解海洋中的初级生产过程。同时光合作用参数也是构建海洋生态系统数值模型的重要基础。
在CHOICE-C航次的支持下,黄邦钦研究组(Coastal Ecology Group,http://mel.xmu.edu.cn/group/ceg/index.asp)在南海北部获得了4个航次共149个P-E曲线的数据,时间跨度上含春、夏、秋三个季节,空间跨度(近岸、陆架到海盆)上具有明显的营养盐和生物量梯度。通过分析发现,与前人结果相似的是, Φm沿着富营养到寡营养的梯度出现明显的下降,浮游植物群落结构同时发生了粒级的显著改变,从micro-phytoplankton为主变化为以pico-phytoplankton为主。Pm是影响最终初级生产力大小的最重要的参数,虽然在洋盆和全球尺度上的研究表明,温度是估算PBm(单位叶绿素a的光饱和固碳速率)的最好的参数之一,但在许多区域性的系统中,温度通常不是一个很好的指标;我们的研究也发现,在南海北部,PBm的变化与温度的变化,在统计学上无相关关系,但与浮游植物群落结构的变动相关。光合作用、初级生产力与浮游植物群落结构的关系,是近年来和将是今后一段时间内的一个研究热点,与他人的研究结果不同的是,我们的研究发现,PBm的大小,不能在粒级结构上进行很好地区分,以pico-phytoplankton为主的群落的PBm值具有非常大的变化范围,但会随着原绿球藻比例的增加而变小。
该研究展示了从生物量(叶绿素a)到初级生产力转换的关键参数,为水色遥感和生地化研究提供了重要的参考。该成果将刊登于Journal of Geophysical Research: Oceans第120卷第5期。
Reference: Xie, Y., B. Huang, L. Lin, E. A. Laws, L. Wang, S. Shang, T. Zhang, and M. Dai (2015), Photosynthetic parameters in the northern South China Sea in relation to phytoplankton community structure, J. Geophys. Res. Oceans, 120, doi:10.1002/2014JC010415.
Abstract:
Many recent models for retrieval of primary production in the sea from ocean-colour data are temperature-based. But previous studies in low latitudes have shown that models that include phytoplankton community structure can have improved predictive capability. In this study, we measured photosynthetic parameters from photosynthesis-irrandiance (P-E) experiments, phytoplankton absorption coefficients, and phytoplankton community structure derived from algal pigments during four cruises in the northern South China Sea. The maximum quantum yield of CO2 (ΦCm) and the chlorophyll a-normalized P-E curve light-limited slope (αB) varied significantly with the blue-to-red ratio of phytoplankton absorption peaks (aph(435)/aph(676)) (p < 0.001, r = -0.459 and -0.332, respectively). The unexplained variability could be due in part to the absorption associated with non-photosynthetic pigments. The chlorophyll a-normalized light-saturated photosynthesis rate (PBm) at the surface showed a unimodal distribution over the chlorophyll a range during the spring and summer, and significantly increased when Prochlorococcus was outcompeted by other pico-phytoplankton (p < 0.01). Almost 60% of the variance of PBm could be explained by a piecewise regression with phytoplankton absorption coefficients and pigment markers. Unlike previous studies, our data showed that changes of PBm were unrelated to the size structure of phytoplankton. Although a temperature-based approach could not effectively predict αB and PBm in the NSCS, a trophic-based approach can be used for assignment of these parameters in a regional primary production model using ocean-colour data.
Full text available at: http://dx.doi.org/10.1002/2014JC010415