º£Ñó¹úÖØ
Luncheon Seminar #204: Fingerprint of Emissions in the Atmosphere: from Fossil Fuel CO2 to Wildfire Smoke
   
¡¾Time¡¿: 2021-11-22 (ÐÇÆÚÒ») 11:40am-1:00pm Seminar starts at 12:00pm    ¡¾Count¡¿: 1147   ¡¾Updated on¡¿: 2021-11-15
¡¾Venue¡¿: Cafe, 2nd Floor, Zhou Long Quan Building
¡¾Speaker¡¿: Xinxin Ye, Assistant Research Scientist
¡¾Institution¡¿: University of California, Los Angeles, USA
¡¾Host¡¿: Zhiyu Liu   ¡¾Contact¡¿: Ying Huang 2181571

Abstract£º

Greenhouse gases and smoke aerosol particle emissions from fossil fuel combustion and biomass burning significantly affect several key aspects of the atmospheric environment and climate system (e.g., atmospheric constituents, air quality, optical properties, and radiative forcings from greenhouse gases and aerosols). However, large uncertainty of emissions still exists in the common bottom-up estimates, due to data gaps, a lack of knowledge in fuel statistics, and inaccurate emission factors. Atmospheric observations from satellites and other platforms offer a unique opportunity to objectively quantify the magnitude and distribution of emissions from virous processes.

In this talk, I will discuss the application of inverse modeling technique to quantify ffCO2 and wildfire emissions by assimilating atmospheric observations. First, a Bayesian inversion framework is developed to constrain the fossil fuel CO2 (ffCO2) emissions from urban areas by utilizing the Orbiting Carbon Observatory 2 (OCO-2) total column CO2 retrievals. The contribution of error components (model transport, measurement) and number of retrievals to the uncertainty of emission estimates are explicitly evaluated, with implications for future carbon monitoring missions. Next, I will discuss the application of inverse modeling to a forecasting system of wildfire smoke for the western U.S., which provides near-real-time improvements of smoke emissions based on satellite data. The performance of the forecasts is intercompared with other eleven state-of-the-art forecasting systems, which suggests pathways for the future development of smoke simulation and forecasts. Lastly, I will present our ongoing research of assessing the vertical allocation of smoke emissions by utilizing inverse modeling and airborne lidar observations.