Radionuclides as Tracers in the Ocean

- **Radionuclides**, of both natural and artificial origins, can be used as **CLOCKS of key processes** (age and/or rates) in the oceans, mainly because they:
	- Are **ubiquitous** in all compartments of the oceans
	- Have a large **range of half-lives** (from seconds to billions of years)
- Here we provide you with some examples of how radionuclides are used, such as:
- 1) What are the **sources, rates and pathways** of substances to and from the ocean (both natural and anthropogenic)?
- 2) How do water masses move in the ocean? Present and Past **circulation**
- 3) How are substances **transported** from the surface ocean to the deep ocean?
- 4) How do we study the **past** (climate, anthropogenic impacts, ...)? The sedimentary record

Climate Change

3

The "Biological Pump"

Biological Pump = 11-16 Gt C/year = an atmospheric uptake of $CO₂ \sim 200$ ppm.

These biological processes not only transfer organic matter to depth, but other particle reactive elements and compounds, such as heavy metals and organic compounds like PCB's.

Contaminants

Global distribution of 400-plus systems that have scientifically reported accounts of being eutrophication-associated dead zones

Robert J. Diaz, and Rutger Rosenberg Science 2008;321:926-929

Published by AAAS

How do we address these oceanographic questions?

- Choose the **appropriate tracer**(s), with 3 major constraints:
	- **Source** term: is the source function well resolved?
	- **Biogeochemistry**: is it relevant? known?
	- **Timescale**: is the half-life $(T_{1/2})$ of the radionuclide appropriate?
- We need
	- A **model**: x c v x $D \frac{\partial C}{\partial C}$ t ∂x $\frac{C}{dt} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right) - V \frac{\partial C}{\partial x} \overline{}$ \int \setminus $\overline{}$ ⎜ ⎝ $\bigg($ = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
	- Analytical **techniques**

λc

Case studies

- 1. Submarine groundwater discharge (SGD)
	- Radium quartet $(^{223}Ra, ^{224}Ra, ^{226}Ra$ and $^{228}Ra)$ and 222Rn
		- \rightarrow Specific Lecture 4 (Billy Moore)

Case studies

- 1. Export of particles and particulated-substances from the surface to the deep ocean
	- $-$ 234Th/238U

U is conservative in seawater

ng g⁻¹: ²³⁸U (± 0:061) = 0.100 × S − 0.326 dpm L⁻¹:²³⁸U (± 0:047) = 0.0786 × S − 0.315

Owens *et al*., 2011

238U decays in 234Th: **The Case of the Radioactive Daughter**

$$
\begin{array}{ccccccc}\nA & & \rightarrow & B & \rightarrow & C & \rightarrow & \dots \\
N_1, \lambda_1 & & & N_2, \lambda_2 & & N_3, \lambda_3 & & \n\end{array}
$$

The Bateman Equations

$$
\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2
$$

$$
N_2 = \frac{\lambda_1}{\lambda_2 \lambda_1} N_1^0 [e^{-\lambda_1 t} - e^{-\lambda_2 t}] + N_2^0 e^{-\lambda_2 t}
$$

If
$$
^{N1}t_{\frac{1}{2}} \gg^{N2}t_{\frac{1}{2}} \to \lambda_1 \ll \lambda_2 \to
$$
 Secular Equilibrium

For the naturally occurring radionuclides: 238U, 235U, and 232Th the half-lives of the parent nuclides are much longer than their daughter products:

$$
^{238}U (t_{1/2} = 4.5.10^9 \text{ yr}) \xrightarrow{\alpha} ^{234}Th (t_{1/2} = 24.1 \text{ d})
$$

 \rightarrow The number of parents atoms essentially remains constant

→ ²³⁸U and ²³⁴Th in equilibrium: same activity

Scavenging

- Many trace metals have much lower dissolved sea water concentration than they should have based on continental weathering supply -- *Fritz Haber (Nobel Prize in 1918)*
- "Sorption" onto suspended and sinking phases leads to removal of inorganic and organic compounds *(Goldberg- 1954) **Note that here we are not differentiating between biological uptake and surface sorption*
- Particles therefore act as sequestering agents for reactive elements (Fe, Cu, Pb, Th, Pa, etc.)
- Small particles (0.01 100 µm) provide increased surface area for adsorption of dissolved chemicals

Many elements in the ocean are influenced by scavenging (adsorption onto sinking particles) Concentrations increasing with depth are diagnostic of scavenging and regeneration (circles are not exhaustive) *Periodic table from Y. Nozaki*

234Th as a tracer for particle export

See decrease in 234Th activity correlated with biological activity!!

18 Coale and Bruland (1987)

Export of Th 234Th flux = $\lambda_{\text{Th}} f(A_{U} - A_{\text{Th}})$ dz

Carbon flux = 234 Th flux • [C/ 234 Th]_{part}

Cochran and Masqué, 2003

234Th Source from 238U decay in seawater (conservative), loss due to radioactive decay AND due to particle attachment and sinking.

 $N_p \lambda_p = N_p \lambda_p + kN_p$ Remember that $A = \lambda N$

 $A_p \lambda_D = A_D \lambda_D + kA_D$ where k A_D is the "Flux"

 $k = \lambda_D (A_p/A_p-1)$ where k is the scavenging coefficient

 τ_{D} = 1/k = Residence time of N_D with respect to scavenging!!

An example in the Atlantic Ocean

GEOTRACES GA02,2010-11

S. Owens PhD and V. Puigcorbé PhD

Carbon export fluxes at 100 m

Puigcorbé et al. In prep.

Carbon export fluxes at 100 m

Puigcorbé et al. In prep.

Case studies

2. Gas exchange

Processes influencing gas exchange $(CO₂, Methane,...)$

The 222Rn/226Ra method

Application in the Arctic Ocean – Sea Ice

Loose et al., 2013

ARK XXIV/3 TransArc 2011

Open water stations

- Ice covered: Average gas transfer velocity < 0.1 m/d
- Open water: expected 0.5-2.2 m/d
- Partially ice-covered regions: gas exchange is lower than expected

Case studies

- 3. Artificial radionuclides
	- 1. Ocean Circulation

Artificial radionuclides derived from (1) atmospheric fallout (weapons tests), (2) point sources from nuclear facilities (Sellafield, La Hague) and (3) nuclear accidents (Chernobyl, Fukushima) used to trace currents and deep water formation.

2. Particle Transport

Artificial radionuclides that are particle reactive used to determine particle transport pathways, sediment geochronologies.

1.Fallout Inputs

Long-term trend of ¹³⁷Cs in surface water in the western North Pacific Ocean: past

Year

Updated after Aoyama and Hirose, 2004

Decay corrected accumulative fallout: ¹³⁷Cs

Pathway of weapons tests derived ¹³⁷Cs in the Pacific Ocean: tracer of sea water movement

Bomb ¹⁴C and Gas Exchange: Measuring how much ¹⁴C has penetrated the ocean since nuclear weapon's testing.

Age of water masses: ³H-³He (1981)

2. Point source inputs: Arctic Ocean

Pathways (red arrows) for the transport of tracers from Sellafield and La Hague through Arctic Ocean. Inset shows 129I input functions from the nuclear fuel reprocessing plants.

BNFL Sellafield

¹²⁹I water-depth profiles in Arctic Ocean show the arrival of the large pulse produced in the 1990s from Sellafield and La Hague. Inset (lower right) shows ¹²⁹l input function at 60°N. The arrival of the lower, pre-1993 signal (blue color) is indicated at each station by blue ¹²⁹l profiles. The arrival of the higher, post-1993 signal is indicated by red profiles. For example, the ¹²⁹I level at Sta. 4 (North Pole) is constant (blue color) between 1994-1999, but begins to increase (red color) in 2000 and then further increases by 2007. This shows that the 1990s pulse in ¹²⁹I takes about 10 years to get to Station 4.

The comparison of ¹²⁹l and ¹³⁷Cs levels measured in surface water on a wide range of oceanographic cruises (noted in legend) gives transit times and dilution factors referenced to 60ºN in the North Sea. It takes Atlantic Water 1 year to flow to the Barents Sea, 3-5 y to the Kara Sea, 6-7 y to the Laptev Sea, 9-10 y to the North Pole. The tracer signal is diluted by a factor of 5 by the time it reaches the North Pole; most of this dilution occurs in the marginal Russian seas. The surface flow is advective with very little mixing: it almost flows like a river (not true of underlying intermediate water).

Note that there are no tracer data from Canada Basin: surface water is from Pacific with no ¹²⁹I/¹³⁷Cs source.

2. Point Source Inputs: North Atlantic

The Global Ocean Conveyor Belt

One year history of ¹³⁷Cs in ocean immediately off Fukushima

Summary of sources and fate of Fukushima Cs in the ocean

Case studies

- 4. Deep ocean circulation, present & past
	- $-$ 231 $Pa/230Th$

Ocean Conveyor Belt Circulation

In Negre (2009), from Kuhlbrodt et al. (2007) after Rahmstorf (2002)

E. Paul Oberlander (http://www.whoi.edu/oceanus/)

Traditional view of $231Pa/230Th$ to trace deep ocean circulation

Pending permission by F. Deng & G. Henderson

Traditional view of $231Pa/230Th$ to trace deep ocean circulation

Traditional view of $231Pa/230Th$ to trace deep ocean circulation

Sediment $231Pa/230Th$ as a proxy of ocean circulation rate

Sediment records of abrupt climate changes in the past 20 kyr

Red: warm events

Examples / Case studies

- 5. Sediment mixing and sedimentation
	- Pb-210 \rightarrow Specific lecture 3

In summary

- **Radionuclides** are very useful tools as **tracers** to study a **large variety of processes** in the oceans at various **time scales** from days to milions of years, such as
	- Inputs and outputs
	- Circulation
	- Transfer of substances
	- Sedimentary record