Radioactivity in the Marine Environment

Image:<http://earthobservatory.nasa.gov/IOTD/view.php?id=8129>

Radionuclides in the Marine Environment

The focus of this lecture is to understand:

1) The 3 main sources of radionuclides to the marine environment

2) Key examples of how radionuclides can be used to trace a variety of ocean processes.

Three main sources of radionuclides to Marine Environment:

1) U-Th series radionuclides – occur naturally on land and in ocean and produce a series of "daughter" radionuclides via radioactive decay. Examples: ^{238}U , ^{234}Th , ^{232}Th , ^{210}Pb and ^{222}Rn

2) Cosmogenic Radionuclides – continuously being created by cosmogenic rays that interact with materials in the atmosphere and on Earth. Examples: ¹⁴C, ⁷Be

3) Artificial radionuclides – continuously being produced by humans. Examples: 90Sr, 137Cs, 239Pu

Radionuclide distributions in the ocean are controlled by:

1) Geochemical and physical properties of elements

Particle reactive radionuclides (Th, Pb, Po) are tracers of: "scavenging" processes (Goldberg, 1954) "export" "particle flux"

Conservative tracers (U, Ra) are tracers of: physical processes, including horizontal and vertical mixing, dilution

Gas exchange (Rn)

2) Half lives for radioactive decay determine processes that can be traced

days-²²⁴Ra months-²³⁴Th years-²²⁸Th decades-²¹⁰Pb millennia-231Pa

Many options

Table of radionuclides used to quantify geochemical processes (Santschi and Honeyman, 1989)

& more waiting to be discovered!

U-Th series decay series and ocean properties

Activities in the marine environment depend upon: 1) source, 2) chemistry of element, 3) decay

U-Th series decay chains

[http://www.awi.de/en/research/research_divisions/geosciences/marine_geochemistry/research_themes/natural_radionuclides_and_geotrace](http://www.awi.de/en/research/research_divisions/geosciences/marine_geochemistry/research_themes/natural_radionuclides_and_geotraces/tracers_for_transport_processes/) s/tracers_for_transport_processes/

U-Th series decay chains

Brief Overview:

1) Uranium

- soluble in seawater "conservative" tracers
- source from weathering
- decays to Th in oceans and marine sediments
- multiple isotopes of interest: ²³⁸U, ²³⁵U, ²³⁴U
- half-life $> 10^5 10^9$ years

2) Thorium

- particle reactive in seawater- "scavenging" tracers
- multiple isotopes: ²³⁰Th, ²²⁸Th, ²³⁴Th
- short/long time scales- days to 10⁴ years

3) Radium/Radon

- soluble- "conservative" tracers
- multiple Ra isotopes-²²⁶Ra, ²²⁸Ra, ²²³Ra, ²²⁴Ra
- Rn used for gas exchange (^{222}Rn)
- both enriched in sediments and groundwater
- short to long time scales- days to $10⁴$ years

U-Th series decay chains

4) Lead/Polonium

- particle reactive scavenging tracers
- ²¹⁰Pb & ²¹⁰Po disequilibrium used for scavenging
- ²¹⁰Pb tracer of sediment mixing/accumulation
- Time scales of 100's days to 100 years

5) Protactinium

- scavenging tracer (²³¹Pa & ²³⁰Th pair)
- long time scales- paleoflux
- ²³¹Pa: 10⁴ year half life

6) Actinium

- conservative tracer
- relatively soluble in seawater
- less commonly used
- ²²⁷Ac: 22 year half life

Key examples of U-Th series-U is soluble, conservative in seawater

Key examples of U-Th series scavenging using ²³⁴Th in the ocean

²³⁴Th lower near coast due to higher particle flux

Bhat, Krishnaswami, Lal, Rama & Moore, 1969

How does it work?

²³⁴Th as a tracer for particle export

238U $\frac{\alpha}{\sqrt{2}}$ **234Th** (t_{1/2} = 24.1 d) $\alpha \rightarrow$

²³⁸U is conservative in seawater.

²³⁴Th is highly particle reactive

Expect secular equilibrium in an ocean without particles

Biological Pump

Combined processes that create sinking particles in the ocean - scavenging tracers follow these routes

Expected ocean ²³⁴Th distributions

Example-Thorium-234 distribution top 500m off west coast South America

GEOTRACES program Intermediate data product Erin Black PhD thesis in progress, WHOI

Example of conservative tracer- ²²⁸Ra half-life $= 5.75$ years

horizontal transport from margin source

Cosmogenic Radionuclides- many produced

Table 1. Isotopes $(\tau_{\frac{1}{2}} > 1$ day) produced by cosmic rays in the atmosphere.

* Based on cross section measurements $[H2]$.

Lal and Peters, 1967

Cosmogenic Radionuclides - Sources

Spallation: A high energy nuclear reaction resulting in the emission of two or More fragments from the nucleus

Cosmogenic Radionuclides - Sources

Fig. 8.1.11. Photomicrograph of a nuclear event observed by Leprince-Ringuet, Bousser, Hoang, Jauneau, and Morellet (LRL49.2; LRL49.3) in an Ilford G5 electronsensitive emulsion flown at about 15 g cm⁻⁴. The star appears to be produced by a neutral primary particle. It contains 27 secondary particles of greater than minimum ionization, which can be identified as protons, a-particles, and heavier nuclear fragments. It also contains 28 secondary particles of minimum ionization, emitted within a fairly narrow cone. Some of these particles must be created during the interaction because the total charge carried by the star particles is greater than the total charge of the heaviest nucleus present in the emulsion. According to the authors, some of the secondary particles of minimum ionization are mesons, some are protons.

"Cosmic Ray Shower"

http://www.physics.pur [due.edu/primelab/roset](http://www.physics.purdue.edu/primelab/rosetest/plresearch.php) est/plresearch.php

As such…. cosmogenic nuclide production varies with height in the atmosphere!

Most cosmic rays are "galactic" and originate from supernovas, but *our sun* is also a significant source.

89% are hydrogen 10% helium, and 1% heavier elements.

Fig. 3. Composition of cosmic radiation as a function of atmospheric depth. The flux values refer to geomagnetic latitude 45° and to longitude 80° West. (From PETERS [P3].)

Production may vary with latitude due to:

https://www.youtube.com/watch?v=6hD52H7rQak

Example-¹⁰Be production in the Atmosphere

atoms/y/cm³

DELAYGUE, Gilles; BEKKI, Slimane; BARD, Edouard. Modelling the stratospheric budget of beryllium isotopes. Tellus B, [S.l.], v. 67, aug. 2015. ISSN 1600-0889.

Variations over short/seasonal time scales

Northern lights in County Donegal, Ireland January 24, 2012 (From a solar flare that erupted on Jan 22nd)

Photo taken by Twitter ser [@andrew_chester](http://www.twitter.com/andrew_chester) via lockerz.com

Variations on 11 yr solar cycle and longer time scales due to "solar dynamo"

400 Years of Sunspot Observations

What are Cosmogenic Radionuclides Used for?

Mainly ¹⁴C (complicated by "bomb" ¹⁴C) and ⁷Be

Since they are added to the surface ocean, can be tracers of:

- 1) Long time scale ocean circulation $-$ ¹⁴C (t $\frac{1}{2}$ = 5,700 yr)
- 2) Short time scale upper ocean vertical mixing rates $-7Be$ (t $\frac{1}{2}$ = 53 d)
- 3) Sediment accumulation & mixing-¹⁴C
- 4) Ages/dating of organic matter (C cycle)- ¹⁴C Dissolved organic carbon Particulate organic carbon Specific organic compounds

Figure 19b

An idealised diagram depicting the global sweep of the Great Ocean Conveyor W. Broeker Belt. The blue depicts the path followed by the deep water formed in the North Atlantic; and the red, the path followed by the returning upper ocean flow. This diagram was prepared for an article published in the popular Natural History Magazine. I never dreamed that it would become a logo for global change.

Example- Age of ocean waters at 3500m determined from ¹⁴C

Matsumoto and Key 2004

Example-⁷Be for upper ocean mixing conceptual model

7Be half-life = 53 d

- $C =$ change in ⁷Be concentration along a mixing line (dashed)
- $F =$ Atmospheric ⁷Be input
- $H = m$ ixed layer depth H_F = depth of euphotic zone

 $W =$ upwelling velocity

Dashed arrows $=$ horizontal flow

Vertical mixing (K_z) is derived from change in ⁷Be concentration

Kadko and Johns, 2011

Artificial Radionuclides

Bikini island 1946 **Artificial Radionuclides** are those radioactive nuclides that do not naturally occur on Earth, i.e. "man-made"

Different sources:

1) nuclear reactor operations

2) nuclear weapons

3) particle accelerators

Nuclear power **Why make artificial radionuclides?**

It's all about using a fission chain reaction to release energy!

The main fissionable radionuclides are:

1) ^{233}U (produced by neutron irradiation of ^{232}Th) **2) ²³⁵U (naturally occurring ~0.72% of U)** 3) 239 Pu (produced by neutron irradiation 238 U)

Most nuclear reactors use Low Enriched Uranium (LEU) that is about 3- 5% uranium-235 for **controlled nuclear fission** to generate heat

Why make artificial radionuclides?

& Nuclear weapons

"uncontrolled" nuclear fission

High Enriched Uranium (HEU) is enriched to more than 20% uranium-235 and is weapons-usable, but the lower the enrichment level the greater the amount of material required to achieve a critical mass— i.e. mass to build a bomb.

Weapons-grade HEU, is typically defined as 90% HEU or above, to minimize weapons' size. Smaller and lighter nuclear weapons are much easier to deliver

Can also use Pu for nuclear weapons- fission bombs

Why make artificial radionuclides? continued……

Medical

Treatments- cancer & tracers- blood tracking

Industrial applications Sensors (thickness), detectors, sterilization

Consumer products Smoke detectors Ceramic glazes

Major sources of artificial radionuclides to the environment

1) Nuclear weapons - atmospheric testing,

1950's-1960's most above ground tests in US and USSR \approx 200,000 PBq total; \approx 1,000 PBq ¹³⁷Cs

2) Planned releases from nuclear fuel reprocessing cycle Windscale/Sellafield (UK); Cap de la Hague (France) \simeq 45 PBq total; \simeq 40 PBq ¹³⁷Cs

3) Accidents related to nuclear power/production Chernobyl (April 26, 1986) \approx 5000 PBq total; \approx 100 PBq ¹³⁷Cs Three Mile Island ≈ 0.00004 PBq ¹³⁷Cs Fukushima (March 11, 2011) ≈ 500 PBq total; ≈ 20-40 PBq $137Cs$ **Since 1945 there have been 517 known atmospheric nuclear weapon tests conducted worldwide**.

USA (216 Events) Soviet Union (213 Events) France (45 Events) China (21 Events) Great Britain (21 Events)

http://www.seismo.ethz.ch/research/groups/veri/projects/nu_atmospheric <https://www.youtube.com/watch?v=310-GYiitpM>

Where? Atmospheric nuclear weapons testing leads to global fallout

12% of the fallout deposited as "close-in" fallout near the test site 10% percent has ended up in a band around the same latitude as the test site. 78% percent is "global" fallout, most of which has ended up in the same hemisphere

Global ⁹⁰Sr fallout

When? testing in/after WWII and Cold War era testing ban around 1960 followed by peak in 1962 atmospheric testing ceased entirely in 1980.

Source from nuclear fuel reprocessing discharges to Irish sea Sellafield- peak inputs in mid-1970's

Replotted from data in IAEA Tech Doc 1429, 2005

<http://www.mapsofworld.com/world-maps/major-nuclear-disasters.html>

Other sources to the marine environment

4) Satellite accidents

SNAP 9A, 1964 burn-up of ²³⁸Pu powered satellite 0.004 PBq

5) Undetonated bomb accidents

Thule Greenland; Johnston atoll, Pacific Palomares Spain

6) Waste dumping

At sea dumping of low level waste, now ended ~45 PBq Medical wastes for hospitals High level waste- reactors from subs, icebreakers in Arctic ~40 PBq

7) Nuclear Submarines

Operations (⁶⁰Co) Accidents US, FSU

End result is uneven distribution in ocean

Total cesium-137 : what are largest sources?

1 Bq = 1 Becquerel = one radioactive decay per second 1 PBq = peta-Becquerel = one million billion Bq 10^{15} Bq = 1,000,000,000,000,000 Bq

Total cesium-137 : how does it compare to natural radioactivity?

Why so much attention on cesium? SU THUCH ACCHCHUNT SH CONGHIMA

2011 vs 2015 Total Releases- example from Fukushima Dai-ichi

Fukushima soucres- adapted from Steinhauser et al., 2014

Applications of artificial radionuclides in ocean

1) Water/Atmospheric mixing rates (including groundwater and soil erosion) ³H, ¹³⁷Cs, ¹⁴C, ⁹⁰Sr

2) Particle scavenging & transport rates in water column Pu, ²⁴¹Am, ¹⁰⁶Ru, ¹⁴⁴Ce

3) Sediment accumulation & mixing Pu, ¹³⁷Cs

4) ages/dating of specific elements/compounds DOC/COC; compound specific ¹⁴C Fallout radionuclide records in corals; mollusks

eGEOTRACES Example of conservative tracer from weapons tests- tritium **TRITUM [TU]**

(c) 2014 Reiner Schiltzer, Alfred Wegener Institute, Bremerhaven, Germany

http://www.egeotraces.org/scenes.html

Example of artificial radionuclides from nuclear disaster

Fukushima cesium as tracer of currents and mixing

Rossi et al., 2013 & 2014

Fallout Pu - particle scavenging leads to decrease with time - contrasts with Cs and other conservative fallout isotopes

Lindahl et al., 2010

Povinec et al., 2003

How to find marine radioactivity data? e.g. IAEA MARiS Database for Artificial Radionuclides

Search

Select Fields

Search

¢⊅ Reset Co-ordinates [⊕] Zoom In © Zoom Out २? Identify Sample ∜

http://maris.iaea.org

Radionuclides in the Marine Environment- SUMMARY

1) The 3 main sources of radionuclides to the marine environment

2) Key examples of how radionuclides can be used to trace a variety of ocean processes- scavenging and conservative tracers

